Environmental Earth Sciences

, Volume 72, Issue 12, pp 4995–5005 | Cite as

Conservational use of remote sensing techniques for a novel rainwater harvesting in arid environment

  • Mohamed ElhagEmail author
  • Jarbou A. Bahrawi
Original Article


Remote sensing applications in water resources management are becoming an essential asset in all different levels of integrated water rational use. Due to remote sensing data availability and different acquisition sensors of satellite images, a wide variability of benchmarks could be conducted under the same theme. Rainwater harvesting is the branch of science where the rainwater is the main target to improve groundwater recharge, stratocumulus clouds are the main source of rain in arid regions. Cloud detection using remote sensing techniques proved to be efficient recently but the general uses of different cloud detection techniques are to precisely omit clouds from satellite images. The use of cloud detection scheme described herein is designed for the MERIS Level1B data; therefore, total set of 60 MERIS images was collected on monthly basis for 5 years started from January 2008. The use of the cloud detection algorithm is to find proper land cover suitable for rainwater harvesting mostly covered with cloud all over the year. Evaluation of land use for rainwater harvesting in terms of groundwater recharge is considered, several factors were taken into consideration and NDWI is one of the most important factors involved. Results pointed out that some regions in southern Saudi Arabia are qualified enough to be considered as potential sites for better rainwater harvesting.


Cloud detection Geographical information system MERIS images Rainwater harvesting Remote sensing 



This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (155-001-D1434). The authors, therefore, acknowledge with thanks DSR technical and financial support.


  1. Al-Charideh A (2012) Recharge rate estimation in the mountain karst aquifer system of Figeh spring, Syria. Environ Earth Sci 65(4):1169–1178CrossRefGoogle Scholar
  2. Al-Othman AA, Ahmed I (2012) Hydrogeological framework and its implication on water level rise in Eastern ArRiyadh, Saudi Arabia. Environ Earth Sci 67(5):1493–1502CrossRefGoogle Scholar
  3. Beverly CR, Nathan RJ, Malafant KWJ, Fordham DP (1999) Development of a simplified unsaturated module for providing recharge estimates to saturated groundwater models. Hydrol Process 13:653–675CrossRefGoogle Scholar
  4. Brauman KA, Freyberg DL, Daily GC (2010) Forest structure influences on rainfall partitioning and cloud interception: a comparison of native forest sites in Kona, Hawaii. Agric For Meteorol 150:265–275CrossRefGoogle Scholar
  5. Brockmann C, Ruescas A, Stelzer K (2011) MERIS pixel identification. ATBD, ESA-ESRIN, pp 2–17Google Scholar
  6. Bruijnzeel LA, Eugster W, Burkard R (2005) Fog as a hydrologic input. In: Anderson MG, McDonnell J (eds) Encyclopedia of hydrological sciences. John Wiley & Sons Ltd, Chichester, pp 559–582Google Scholar
  7. Brunner P, Hendricks-Franssen HJ, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15(1):5–18CrossRefGoogle Scholar
  8. Chowdhury A, Jha MK, Chowdary VM (2010) Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ Earth Sci 59(6):1209–1222CrossRefGoogle Scholar
  9. Cobet TF (2000) A groundwater-basin approach to conceptualize and simulate post-Pleistocene subsurface flow in a semi-arid region, southeastern New Mexico and western Texas, USA. Hydrogeol J 8(3):310–327CrossRefGoogle Scholar
  10. Cosh MH, Jackson TJ, Smith C, Toth B, Berg AA (2013) Validating the BERMS in situ soil water content data record with a large scale temporary network. Vadose Zone J. doi: 10.2136/vzj2012.0151 Google Scholar
  11. Dasgupta S (2007) Remote sensing techniques for vegetation moisture and fire risk estimation. Ph.D. dissertation, George Mason University Virginia, United StatesGoogle Scholar
  12. Dawod GM, Mirza MN, Al-Ghamdi KA (2012) GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ Earth Sci 67(8):2205–2215CrossRefGoogle Scholar
  13. De Vries JJ (1997) Prediction in hydrogeology: two case histories. Geol Rundsch 86:354–371CrossRefGoogle Scholar
  14. De Vries JJ, Selaolo ET, Beekman HE (2000) Groundwater recharge in the Kalahari, with reference to paleo-hydrologic conditions. J Hydrol 238:110–123CrossRefGoogle Scholar
  15. Deepika B, Avinash K, Jayappa KS (2013) Integration of hydrological factors and demarcation of groundwater prospect zones: insights from remote sensing and GIS techniques. Environ Earth Sci 70(3):1319–1338CrossRefGoogle Scholar
  16. Delwart S, Preusker R, Bourg L, Santer R, Ramon D, Fischer J (2007) MERIS inflight spectral calibration. Int J Remote Sens 28:479–496CrossRefGoogle Scholar
  17. El-Bastawesy M, Ali RR, Al Harbi K, Faid A (2013) Impact of the geomorphology and soil management on the development of waterlogging in closed drainage basins of Egypt and Saudi Arabia. Environ Earth Sci 68(5):1271–1283CrossRefGoogle Scholar
  18. Elhag M, Bahrawi J (2014) Cloud coverage disruption for groundwater recharge improvement using remote sensing techniques in Asir Region, Saudi Arabia. Life Sci J 11(1):192–200Google Scholar
  19. Elhag M, Psilovikos A, Manakos I, Perakis K (2011) Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resour Manag 25(11):2731–2742CrossRefGoogle Scholar
  20. Elhag M, Psilovikos A, Sakellariou M (2013) Detection of land cover changes for water recourses management using remote sensing data over the Nile Delta Region. Environ Dev Sustain 15(5):1189–1204CrossRefGoogle Scholar
  21. El-Hames AS, Al-Ahmadi M, Al-Amri N (2011) A GIS approach for the assessment of groundwater quality in Wadi Rabigh aquifer, Saudi Arabia. Environ Earth Sci 63(6):1319–1331CrossRefGoogle Scholar
  22. El-Maghraby MS, Abu El Nasr AO, Hamouda MA (2013) Quality assessment of groundwater at south Al Madinah Al Munawarah area, Saudi Arabia. Environ Earth Sci 70(4):1525–1538CrossRefGoogle Scholar
  23. Engelhardt I, Rausch R, Keim B, Al-Saud M, Schuth C (2013) Surface and subsurface conceptual model of an arid environment with respect to mid- and late Holocene climate changes. Environ Earth Sci 69(2):537–555CrossRefGoogle Scholar
  24. Feister U, Möller H, Sattler T, Shields J, Görsdorf U, Güldner J (2010) Comparison of macroscopic cloud data from ground-based measurements using VIS/NIR and IR instruments at Lindenberg, Germany. Atmos Res 96:395–407CrossRefGoogle Scholar
  25. Fell F, Fischer J (2001) Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J Quant Spectrosc Radiat Transf 3:351–388CrossRefGoogle Scholar
  26. Fischer J, Bennartz R (1997) Retrieval of total water vapour content from MERIS measurements, algorithm theoretical basis document PO-TN-MEL-GS-0005. ESA-ESTEC, NoordwijkGoogle Scholar
  27. Fischer J, Grassl H (1984) Radiative transfer in an atmosphere ocean system: an azimuthally dependent matrix-operator approach. Applied Optics 23:1032–1041CrossRefGoogle Scholar
  28. Fischer J, Preusker R, Schüller L (1997) ATBD cloud top pressure. European Space Agency Algorithm Theoretical Basis Doc. PO-TN-MEL-GS-0006, p 28Google Scholar
  29. Frey RA, Ackerman SA, Liu Y, Strabala KI, Zhang H, Key JR, Wang X (2008) Cloud detection with MODIS. Part I. Improvements in the MODIS cloud mask for collection 5. J Technol 25:1057–1072Google Scholar
  30. Gallaudet TC, Simpson JJ (1991) Automated cloud screening of AVHRR imagery using split-and-merge clustering. Remote Sens Environ 38:77–100CrossRefGoogle Scholar
  31. Gehrels JC (2000) Recharge assessment: comparing tracers, micro-meteorology and soil water models. In: Sililo O et al (eds) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 147–152Google Scholar
  32. Gieske ASM (1992) Dynamics of groundwater recharge: a case study in semi-arid eastern Botswana. PhD Thesis, Vrije Universiteit, Amsterdam, p 289Google Scholar
  33. Gomez-Chova L, Camps-Valls G, Calpe J, Guanter L, Moreno J (2007) Cloud screening algorithm for ENVISAT/MERIS multispectral images. IEEE Trans Geosci Remote Sens 45(12):4105–4118CrossRefGoogle Scholar
  34. Goodman AH, Henderson-Sellers A (1988) Cloud detection analysis: a review of recent progress. Atmos Res 21:203–221CrossRefGoogle Scholar
  35. Guan NH, Zubir M, Jafri M, Abdullah K (2010) Improved cloud detection technique at South China Sea. Aerospace Technologies Advancements, SBN 978-953-7619-96-1, p 492Google Scholar
  36. Hoetzl H (1995) Groundwater recharge in an arid karst area (Saudi Arabia). Int Assoc Hydrol Sci 232:195–207Google Scholar
  37. Holder CD (2003) Fog precipitation in the Sierra de las Minas Biosphere Reserve, Guatemala. Hydrol Process 17:2001–2010CrossRefGoogle Scholar
  38. Holder CD (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For Ecol Manag 190:373–384CrossRefGoogle Scholar
  39. Huang CC, Yeh HF, Lin HI, Lee ST, Hsu KC, Lee CH (2013) Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environ Earth Sci 68(1):267–280CrossRefGoogle Scholar
  40. Jedlovec GJ, Haines SL, LaFontaine FJ (2008) Spatial and temporal varying thresholds for cloud detection in GOES imagery. IEEE Trans Geosci Remote Sens 46(6):1705–1717CrossRefGoogle Scholar
  41. Kazantzidis A, Tzoumanikas P, Bais AF, Fotopoulos S, Economou G (2012) Cloud detection and classification with the use of whole-sky ground-based images. Atmos Res 113:80–88CrossRefGoogle Scholar
  42. Key EL, Minnett PJ, Jones RA (2004) Cloud distributions over the coastal Arctic Ocean: surface-based and satellite observations. Atmos Res 72(1–4):57–88CrossRefGoogle Scholar
  43. King MD, Kaufman YJ, Menzel WP, Tanré D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:1–27Google Scholar
  44. Lindstrot R, Preusker R, Fischer J (2009) The retrieval of land surface pressure from MERIS measurements in the Oxygen A band. J Atmos Ocean Technol 26:1367–1377Google Scholar
  45. Lindstrot R, Preusker R, Fischer J (2010) The empirical correction of stray light in the MERIS oxygen A band channel. J Atmos Ocean Technol 27(7):1185–1194CrossRefGoogle Scholar
  46. McNally AP, Watts PD (2003) A cloud detection algorithm for high spectral resolution infrared sounders. Q J R Meteorol Soc 129:3411–3423CrossRefGoogle Scholar
  47. Mecikalski JR, Watts D, Koenig M (2011) Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos Res 102(1–2):175–190CrossRefGoogle Scholar
  48. Mecikalski JR, Minnis P, Palikonda R (2013) Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds. Atmos Res 120–121:192–201CrossRefGoogle Scholar
  49. Moghadas D, Jadoon KZ, Vanderborght J, Lambot S, Vereecken H (2013) Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: a numerical study. Vadose Zone J. doi: 10.2136/vzj2012.0138 Google Scholar
  50. Molders N, Laube M, Raschke E (1995) Evaluation of model generated cloud cover by means of satellite data. Atmos Res 39(1–3):91–111CrossRefGoogle Scholar
  51. Palecki MA, Bell JE (2013) U.S. Climate Reference Network soil moisture observations with triple redundancy: measurement variability. Vadose Zone J. doi: 10.2136/vzj2012.0158 Google Scholar
  52. Prada S, Menezes de Sequeira M, Figueira C, Prior V, Silva MO (2010) Response to “comment on fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal)”. Agric For Meteorol 150:1154–1157CrossRefGoogle Scholar
  53. Prada S, Menezes de Sequeira M, Figueira C, Silva MO (2009) Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agric For Meteorol 149:1179–1187CrossRefGoogle Scholar
  54. Psilovikos A, Elhag M (2013) Forecasting of remotely sensed daily evapotranspiration data over Nile Delta Region, Egypt. Water Resour Manag 27(12):4115–4130CrossRefGoogle Scholar
  55. Ramos AM, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmos Res 101(1–2):84–101CrossRefGoogle Scholar
  56. Rink K, Kalbacher T, Kolditz O (2012) Visual data exploration for hydrological analysis. Environ Earth Sci 65(5):1395–1403CrossRefGoogle Scholar
  57. Roerink GJ, Su Z, Mementi M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B 2(2):147–157CrossRefGoogle Scholar
  58. Saunders RW, Kriebel RT (1988) An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int J Remote Sens 9:123–150CrossRefGoogle Scholar
  59. Selaolo ET (1998) Tracer studies and groundwater recharge assessment in the eastern fringe of the Botswana Kalahari. PhD thesis, Vrije Universiteit, Amsterdam, p 229Google Scholar
  60. Simpson JJ, Schmidt AB, Harris A (1998) Improved cloud detection in along track scanning radiometer (ATSR) data over the ocean. Remote Sens Environ 65:1–24Google Scholar
  61. Tyler SW, Chapman JB, Conrad SH, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginanni JM (1996) Soil-water flux in the Southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499CrossRefGoogle Scholar
  62. Weaver C, Ginoux P, Hsu C, Chou M, Joiner J (2001) Radiative forcing of Saharan dust. GOCART model simulations compared with ERBE data. J Atmos Sci 59(3):736–747CrossRefGoogle Scholar
  63. Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70(7):3115–3130CrossRefGoogle Scholar
  64. Youssef AM, Pradhan B, Sabtan AA, El-Harbi HM (2012) Coupling of remote sensing data aided with field investigations for geological hazards assessment in Jazan area, Kingdom of Saudi Arabia. Environ Earth Sci 65(1):119–130CrossRefGoogle Scholar
  65. Zhang L, Dawes WR, Hatton TJ, Reece PH, Beale GTH, Packer I (1999) Estimation of soil moisture and groundwater recharge using the TOPOG_IRM model. Water Resour Res 35(1):149–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment and Arid Land AgricultureKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations