Environmental Earth Sciences

, Volume 72, Issue 10, pp 4085–4096 | Cite as

Coupling of a biogeochemical model with a simultaneous heat and water model and its evaluation at an alpine meadow site

  • Xufeng WangEmail author
  • Mingguo Ma
  • Yi Song
  • Junlei Tan
  • Haibo Wang
Original Article


Alpine meadow covers most of the Qinghai-Tibet Plateau where frozen soil is widely distributed. In order to correctly simulate the carbon, water and energy flux of an alpine meadow site at Qinghai-Tibet Plateau, a widely used carbon cycle model Biome-BGC and a cold region land surface model SHAW were coupled. The outputs of the coupled model were validated with the observed carbon fluxes (Gross Primary Productivity, Net Ecosystem Exchange, Ecosystem Respiration), energy fluxes (Latent heat flux, Sensible heat flux), water flux (Evapotranspiration), soil moisture and soil temperature at A’rou site which is located on the east edge of Qinghai-Tibet Plateau. The results indicate that the coupled model can correctly predict the interactions between alpine meadow ecosystem and atmosphere.


Biome-BGC, SHAW, Eddy covariance Alpine meadow Qinghai-Tibet Plateau 



This work was supported by the Chinese State Key Basic Research Project (grant number: 2009CB421305), the Knowledge Innovation Program of the Chinese Academy of Sciences (grant number: KZCX2-EW-312), and the National Natural Science Foundation of China (No. 40871190, 40875006, 91025022 & 41001241). Biome-BGC version 4.1.2 was provided by Peter Thornton at the National Center for Atmospheric Research (NCAR), and by the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana. NCAR is sponsored by the National Science Foundation. We also thank anonymous reviewers and editors for helpful comments on earlier versions of this manuscript.


  1. Churkina G, Tenhunen J, Thornton P, Falge EM, Elbers JA, Erhard M, Grunwald T, Kowalski AS, Rannik U, Sprinz D (2003) Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6:168–184. doi: 10.1007/s10021-002-0197-2 CrossRefGoogle Scholar
  2. Fan JW, Zhong HP, Harris W, Yu GR, Wang SQ, Hu ZM, Yue YZ (2007) Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Change 86:375–396. doi: 10.1007/s10584-007-9316-6:22 CrossRefGoogle Scholar
  3. Flerchinger GN (2000a) The simultaneous heat and water (SHAW) model: user’s manual. Tech Rep NWRC USDAGoogle Scholar
  4. Flerchinger GN (2000b) The simultaneous heat and water (SHAW) model: technical documentation. Tech Rep NWRC USDAGoogle Scholar
  5. Flerchinger GN, Pierson FB (1991) Modeling plant canopy effects on variability of soil temperature and water. Agric For Meteorol 56(3–4):227–246. doi: 10.1016/0168-1923(91)90093-6 CrossRefGoogle Scholar
  6. Flerchinger GN, Hanson CL, Wight JR (1996) Modeling evapotranspiration and surface energy budgets across a watershed. Water Resour Res 32:2539–2548CrossRefGoogle Scholar
  7. Flerchinger BN, Kustas WP, Weltz MA (1998) Simulating surface energy and radiometric surface temperatures for two arid vegetation communities using the SHAW model. J Appl Meteorol 37:449–460CrossRefGoogle Scholar
  8. Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X (2009) Environmental influences on carbon dioxide fluxes over three, grassland ecosystems in China. Biogeosciences 6:2879–2893CrossRefGoogle Scholar
  9. Grabherr G, Gottfried M, Pauli H (1994) Climate effects of mountain plants. Nature 369:448–450CrossRefGoogle Scholar
  10. Guo DL, Yang MX, Wang HJ (2011a) Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol Process 25:2531–2541. doi: 10.1002/hyp.8025 CrossRefGoogle Scholar
  11. Guo DL, Yang MX, Wang HJ (2011b) Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environ Earth Sci 63:97–107. doi: 10.1007/s12665-010-0672-6 CrossRefGoogle Scholar
  12. Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50:8264–8269CrossRefGoogle Scholar
  13. Kato T, Tang YH, Gu S, Hirota M, Cui XY, Du MY, Li YN, Zhao XQ, Oikawa T (2004) Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. J Geophys Res 109:D12109. doi: 10.1029/2003JD003951 CrossRefGoogle Scholar
  14. Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Change Biol 12:1285–1298. doi: 10.1111/j.1365-2486.2006.01153.x CrossRefGoogle Scholar
  15. Kimball JS, White MA, Running SW (1997a) BIOME-BGC simulations of stand hydrologic processes for BOREAS. J Geophys Res 102(24):29043–29051CrossRefGoogle Scholar
  16. Kimball JS, Thornton PE, White MA, Running SW (1997b) Simulating forest productivity and surface atmosphere carbon exchange in the BOREAS study region. Tree Physiol 17(8–9):589–599. doi: 10.1093/treephys/17.8-9.589 CrossRefGoogle Scholar
  17. Kurganova I, Teepe R, Loftfield N (2007) Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use. Carbon Balance Manag 2:2. doi: 10.1186/1750-0680-2-2 CrossRefGoogle Scholar
  18. Li X, Li XW, Li ZY, Ma MG, Wang J, Xiao Q, Liu Q, Che T, Chen EX, Yan GJ, Hu ZY, Zhang LX, Chu RZ, Su PX, Liu QH, Liu SM, Wang JD, Niu Z, Chen Y, Jin R, Wang WZ, Ran YH, Xin XZ, Ren HZ (2009) Watershed allied telemetry experimental research. J Geophys Res 114 (D22103). doi: 10.1029/2008JD011590
  19. Li X, Zhang X, Wu J, Shen Z, Zhang Y, Xu X, Fan Y, Zhao Y, Yan W (2011) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ Earth Sci 64:1911–1919CrossRefGoogle Scholar
  20. Luo S, Lü S, Zhang Y (2009) Development and validation of the frozen soil parameterization scheme in Common Land Model. Cold Reg Sci Technol 55:130–140CrossRefGoogle Scholar
  21. Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX (2010) The change of individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Sci China Life Sci 53(9):1142–1151. doi: 10.1007/s11427-010-4054-9 CrossRefGoogle Scholar
  22. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochemistry 49:333–369Google Scholar
  23. Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36(3):426–438. doi: 10.1007/s00267-004-0316-2 CrossRefGoogle Scholar
  24. Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50:205–218. doi: 10.1006/jare.2001.0902 CrossRefGoogle Scholar
  25. Pietsch SA, Hasenauer H, KUèERA J, èERMÁK J (2003) Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiol 23:735–746. doi: 10.1093/treephys/23.11.735 CrossRefGoogle Scholar
  26. Prieme A, Christensen S (2001) Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biol Biochem 33:2083–2091CrossRefGoogle Scholar
  27. Ren G, Shang Z, Long R, Hou Y, Deng B (2013) The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau, China. Environ Earth Sci 69(1):235–245CrossRefGoogle Scholar
  28. Schmid S, Zierl B, Bugmann H (2006) Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements. Reg Environ Change 6:167–180. doi: 10.1007/s10113-006-0017-x CrossRefGoogle Scholar
  29. Song KC, Kang ES, Jin BW, Zhang ZH (2004) An experimental study of grassland evapotranspiration in the mountain watershed of the Hei River Basin. J Glaciol Geocryol 26(3):349–356 (In Chinese)Google Scholar
  30. Sun JW, Li YN, Song CG, Wang JL (2010) Seasonal dynamics model of aboveground biomass and leaf area index on alpine Kobresia humilis meadow in Qinghai-Tibet Plateau. 31(2): 230–234 (In Chinese). doi: 10.3969/j.issn.1000-6362.2010.02.012
  31. Tatarinov FA, Cienciala E (2006) Application of BIOME-BGC model to managed forests 1. Sensitivity analysis. For Ecol Manag 237:267–279. doi: 10.1016/j.foreco.2006.09.085 CrossRefGoogle Scholar
  32. Thornton PE, Running SW (2002) User’s Guide for Biome-BGC, Version 4.1.2Google Scholar
  33. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222CrossRefGoogle Scholar
  34. Wang QX, Watanabe M, Ouyang Z (2005) Simulation of water and carbon fluxes using BIOME-BGC model over crops in China. Agric For Meteorol 131:209–224. doi: 10.1016/j.agrformet.2005.06.002 CrossRefGoogle Scholar
  35. Wang XF, Ma MG, Han XJ, Song Y (2009) Assimilation of soil moisture in LPJ-DGVM. Proceedings of SPIE vol 7472 747220–747221. doi: 10.1117/12.830312
  36. Wang J, Wang G, Hu H, Wu Q (2010) The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau. Environ Earth Sci 60:537–548CrossRefGoogle Scholar
  37. Wang J, Ye BS, Zhang SQ, Li J, Wu JK, Zhou ZY (2011) Changing features of CO2 fluxes in alpine meadow in the upper reaches of Shule River, Qilian shan. J Glaciol Geocryol 33(3):646–653 (In Chinese)Google Scholar
  38. Wang XF, Ma MG, Huang GH, Veroustraete F, Zhang ZH, Song Y, Tan JL (2012) Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. Int J Appl Earth Obs Geoinf 17:94–101. doi: 10.1016/j.jag.2011.09.009 CrossRefGoogle Scholar
  39. Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes, Global Biogeochemical Cycles 23: GB3014. doi: 10.1029/2008GB003412
  40. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11(2):217–234CrossRefGoogle Scholar
  41. Zhang ZH, Wang WZ, Ma MG, Wu YR, Xu ZW (2010) The processing methods of eddy covariance flux data and products in “WATER” Test. Remote Sens Technol Appl 25(6):788–796 (in Chinese)Google Scholar
  42. Zhang TL, Su R, Hu B, Feng LC, Zhang RH (2011) Simulation of water and carbon fluxes in Harvard forest area by using improved Biome-BGC model. Chin J Ecol 30(9):2099–2106 (In Chinese)Google Scholar
  43. Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ (2006) Diurnal, seaonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Glob Change Biol 12:1940–1953. doi: 10.1111/j.1365-2486.2006.01197.x CrossRefGoogle Scholar
  44. Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosci Discuss 7:1207–1221CrossRefGoogle Scholar
  45. Zhou J, Wang GX, Li X, Yang YM, Pan XD (2008) Data Assimilation apply to energy-water balance analysis of the high cold ecosystem at Tibet-Qinghai Plateau, Northwest China. Adv Earth Sci 23(9):966–973 (In Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xufeng Wang
    • 1
    Email author
  • Mingguo Ma
    • 1
  • Yi Song
    • 2
  • Junlei Tan
    • 1
  • Haibo Wang
    • 1
  1. 1.Cold and Arid Regions Remote Sensing Observation System Experiment Station, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina

Personalised recommendations