Environmental Earth Sciences

, Volume 72, Issue 10, pp 3827–3837 | Cite as

Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system

Model verification, application and visualization for transient density-driven seawater intrusion
  • Marc Walther
  • Lars Bilke
  • Jens-Olaf Delfs
  • Thomas Graf
  • Jens Grundmann
  • Olaf Kolditz
  • Rudolf Liedl
Thematic Issue

Abstract

This paper evaluates the remediation potential of a salinized coastal aquifer by utilizing a scenario simulation. Therefore, the numerical model OpenGeoSys is first validated against analytical and experimental data to represent transient groundwater level development and variable density saline intrusion. Afterwards, a regional scale model with a three-dimensional, heterogeneous hydrogeology is calibrated for a transient state and used to simulate a best-case scenario. Water balances are evaluated in both the transient calibration and scenario run. Visualization techniques help to assess the complex model output providing valuable insight in the occurring density-driven flow processes. Furthermore, modeling and visualization results give information on the time scale for remediation activities and, due to limitations in data quality and quantity reveal potential for model improvement.

Keywords

Groundwater modeling Density-dependent Saltwater intrusion OpenGeoSys Model validation benchmark Transient calibration Scenario simulation Remediation potential Visualization 

Supplementary material

Supplementary material 1 (AVI 91629 kb)

Supplementary material 2 (AVI 32425 kb)

References

  1. Abd-Elhamid H, Javadi A (2011) A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers. J Hydrol 401(3–4):259–271. doi:10.1016/j.jhydrol.2011.02.028. URL http://linkinghub.elsevier.com/retrieve/pii/S0022169411001430
  2. Al-Shoukri SSM (2008) Mathematical Modeling of Groundwater Flow in Wadi Ma’awil Catchment, Barka in Sultanate of Oman. Master’s thesis, Arabian Gulf University, BahrainGoogle Scholar
  3. Bureau de Recherches Géologiques et Minières (BRGM) (1992) Study of A New Organization of Irrigation in Barka-Rumais Area: Data Analysis and Modelling Report. Tech. Rep. 33, BRGM L’ENTREPRISE AU SERVICE DE LA TERREGoogle Scholar
  4. Gerner A, Schütze N, Schmitz GH (2012) Portrayal of fuzzy recharge areas for water balance modelling - a case study in northern Oman. Adv Geosci 31:1–7. doi:10.5194/adgeo-31-1-2012. http://www.adv-geosci.net/31/1/2012/
  5. Giambastiani B, Antonellini M (2007) Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J Hydrol 340(1–2):91–104. doi:10.16/j.jhydrol.2007.04.001. http://www.sciencedirect.com/science/article/pii/S0022169407002119 Google Scholar
  6. Goswami RR, Clement TP (2007) Laboratory-scale investigation of saltwater intrusion dynamics. Water Resour Res 43(4):1–11. doi:10.1029/2006WR005151 CrossRefGoogle Scholar
  7. Grundmann J, Schütze N, Schmitz G, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation-based optimisation. Environ Earth Sci, pp 1381–1394. doi:10.1007/s12665-011-1253-z. http://www.springerlink.com/index/U4767301353M2755.pdf
  8. Helbig C, Bauer HS, Rink K, Wulfmeyer V, Frank M, Kolditz O (2014) Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ Earth Sci (this issue). doi:10.1007/s12665-014-3136-6
  9. Henderson A (2007) ParaView Guide, A Parallel Visualization Application. Kitware Inc., http://www.paraview.org
  10. Henry HR (1960) Salt intrusion into coastal aquifers. PhD thesis, Columbia University, New York, USAGoogle Scholar
  11. Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Kumar R, Musolff A, Centler F, Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2011) The IWAS-ToolBox: Software coupling for an integrated water resources management. Environ Earth Sci 65(5):1367–1380. doi:10.1007/s12665-011-1270-y CrossRefGoogle Scholar
  12. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Röstel G, Teutsch G, Borchardt D, Krebs P (2011) Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1330-3 CrossRefGoogle Scholar
  13. Kolditz O, Ratke R, Diersch HJG, Zielke W (1998) Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv Water Resour 21(1):27–46. doi:10.1016/S0309-1708(96)00034-6. http://www.sciencedirect.com/science/article/pii/S0309170896000346
  14. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao HB, Sun F, Sun YY, Singh aK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012a) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. doi:10.1007/s12665-012-1546-x
  15. Kolditz O, Görke UJ, Shao H, Wang W (2012b) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples. In: Lecture notes in computational science and engineering. Springer, BerlinGoogle Scholar
  16. Krueger EH, Teutsch G (2013) International viewpoint and news. Environ Earth Sci. doi:10.1007/s12665-013-2280-8
  17. Langevin CD, Guo W (2006) MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport. Ground Water 44(3):339–351. doi:10.1111/j.1745-6584.2005.00156.x CrossRefGoogle Scholar
  18. Macumber PG (1998) The Cable Tool Program and Groundwater Flow in the Eastern Batinah Alluvial Aquifer. Ministry of Water Resources, Muscat, OmanGoogle Scholar
  19. Ministry of Agriculture and Fisheries (2012) OMAN SALINITY STRATEGY (OSS) Oman Salinity Strategy. Tech. rep., Ministry Of Agriculture And Fisheries (MAF), Sultanate Of Oman International Center For Biosaline Agriculture (ICBA) Dubai, UAE.Google Scholar
  20. Narayan Ka, Schleeberger C, Bristow KL (2007) Modelling seawater intrusion in the Burdekin Delta Irrigation Area, North Queensland, Australia. Agric Water Manag 89(3):217–228, doi:10.1016/j.agwat.2007.01.008, http://linkinghub.elsevier.com/retrieve/pii/S0378377407000327
  21. Neuman SP (1974) Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response. Water Resour Res 10(2):303–312. doi:10.1029/WR010i002p00303 CrossRefGoogle Scholar
  22. Park CH (2004) Saltwater intrusion in coastal aquifers. PhD thesis, Georgia Institute of TechnologyGoogle Scholar
  23. Park CH, Aral M (2008) Saltwater intrusion hydrodynamics in a tidal aquifer. J Hydrol Eng 13(September):863Google Scholar
  24. Rink K, Bilke L, Kolditz O (2014) Visualisation strategies for environmental modelling data. Environ Earth Sci. doi:10.1007/s12665-013-2970-2
  25. Schroeder W, Martin K, Lorensen B (2006) The Visualization Toolkit: An Object-oriented Approach to 3D Graphics. Kitware, http://books.google.de/books?id=rx4vPwAACAAJ
  26. Schütze N, Kloss S, Lennartz F, Bakri AA (2012) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci, pp 1511–1521, doi:10.1007/s12665-011-1135-4. http://www.springerlink.com/index/RRW27U324587K637.pdf
  27. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880, doi:10.5194/hess-14-1863-2010. http://www.hydrol-earth-syst-sci.net/14/1863/2010/ Google Scholar
  28. Stanger G (1987) The Hydrogeology of the Oman Mountains. PhD thesisGoogle Scholar
  29. Sugio S, Desai CS (1987) Residual flow procedure for sea water intrusion in unconfined aquifers. Int J Numer Methods Eng 24(8):1439–1450. doi:10.1002/nme.1620240803 CrossRefGoogle Scholar
  30. Sun F, Shao H, Wang W, Watanabe N, Bilke L, Yang Z, Huang Z, Kolditz O (2012) Groundwater deterioration in Nankoua suburban area of Beijing: data assessment and remediation scenarios. Environ Earth Sci 67(6):1573–1586. doi:10.1007/s12665-012-1600-8 CrossRefGoogle Scholar
  31. Theis C (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:513–514CrossRefGoogle Scholar
  32. VISLAB (2013) Visualization Center - Helmholtz-Zentrum für Umweltforschung UFZ. http://www.ufz.de/index.php?en=14171
  33. Walther M, Delfs JO, Grundmann J, Kolditz O, Liedl R (2012) Saltwater intrusion modeling: verification and application to an agricultural coastal arid region in Oman. J Comput Appl Math 236(18):4798–4809. doi:10.1016/j.cam.2012.02.008 CrossRefGoogle Scholar
  34. Walther M, Bilke L, Delfs JO, Graf T, Grundmann J, Kolditz O, Liedl R (2013) Visualizing Saline Intrusion in a Three-Dimensional, Heterogeneous. Coastal Aquifer. In: Workshop on Visualisation in Environmental Sciences (EnvirVis), LeipzigGoogle Scholar
  35. Werner AD, Bakker M, Post VE, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry D (2012) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour doi:10.1016/j.advwatres.2012.03.004, http://linkinghub.elsevier.com/retrieve/pii/S030917081200053X

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marc Walther
    • 1
    • 2
  • Lars Bilke
    • 2
  • Jens-Olaf Delfs
    • 3
  • Thomas Graf
    • 4
  • Jens Grundmann
    • 5
  • Olaf Kolditz
    • 6
  • Rudolf Liedl
    • 1
  1. 1.Institute for Groundwater ManagementTechnische Universität DresdenDresdenGermany
  2. 2.Department of Environmental InformaticsHelmholtz-Centre for Environmental ResearchLeipzigGermany
  3. 3.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany
  4. 4.Institute of Fluid Mechanics and Environmental Physics in Civil EngineeringLeibniz Universität HannoverHannoverGermany
  5. 5.Institute of Hydrology and MeteorologyTechnische Universität DresdenDresdenGermany
  6. 6.Applied Environmental Systems AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations