Advertisement

Environmental Earth Sciences

, Volume 72, Issue 6, pp 2091–2099 | Cite as

The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai–Xizang Plateau, China

  • Ren Li
  • Lin Zhao
  • Tonghua WuEmail author
  • Yongjian Ding
  • Yao Xiao
  • Guojie Hu
  • Defu Zou
  • Wangping Li
  • Wenjun Yu
  • Yongliang Jiao
  • Yanhui Qin
Original Article

Abstract

In this study, we collected radiation and active layer temperature data observed in the northern Qinghai–Xizang Plateau during the period 2006–2008 in order to analyze the impact of surface energy balance on the thawing process of the active layer. Results show that surface energy exhibits an obvious seasonal variation. The largest values of energy variables including global radiation, net radiation, soil heat flux and surface heat source intensity occur during June and July, while the smallest values occur in November and December. The active layer is generally dominated by an endothermic process. During the freeze–thaw period, the variation process of the active layer temperature is similar to that of surface energy. The seasonal thawing depth is closely related to the process of surface energy exchange. During the thawing period, seasonal thawing depth gradually increases as more solar energy enters the surface. When the surface energy accumulation is 0.0 MJ m−2 d−1, the seasonal thawing depth is the smallest. The seasonal thawing depth gradually increases with further accumulation of surface energy. Thus, the variation processes between the surface energy and seasonal thawing depth can be expressed by a power relation. The values of seasonal thawing depth calculated with the empirical relationship provided in this study agree well with the observed values. The relative error between calculated and observed values is less than 12 %. These results show that this empirical relationship can be successfully used to describe the behavior of active layers.

Keywords

Energy exchange Thawing processes Active layer Qinghai–Xizang Plateau 

Notes

Acknowledgments

The authors also sincerely thank Miss Lynn Everett for her revising the language of this manuscript. This study was funded by National Major Scientific Project of China “Cryospheric Change and Impacts Research” (2013CBA01803), the National Natural Science Foundation of China (41271081, 41271086), the Hundred Talents Program of the Chinese Academy of Sciences granted to Tonghua Wu (51Y251571), and the Fund of the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2010-03).

References

  1. Al-Mohamad A (2004) Global, direct and diffuse solar radiation in Syria. Appl Energy 79(2):191–200CrossRefGoogle Scholar
  2. Almorox J, Hontoria C (2004) Global solar radiation estimation using sun shine duration in Spain. Energy Convers Manag 45(15):29–1535Google Scholar
  3. Anisimov OA (1989) Changing climate and permafrost distribution in the Soviet Arctic. Phys Geogr 10:285–293Google Scholar
  4. Chen LX, Reiter ER, Feng ZQ (1985) The atmospheric heat source over the Tibetan Plateau: May–August 1979. Mon Weather Rev 113:1771–1790CrossRefGoogle Scholar
  5. Cheng GD (1984) Problems on zonation of high-altitude permafrost. Acta Geographica Sinica 39(2):185–193Google Scholar
  6. Cheng GD, Wu BJ (1983) Approach to the mathematical model of zonality of high-altitude permafrost. J Glaciol Geocryol 5(4):1–7 (in Chinese)Google Scholar
  7. Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112:F02S03. doi: 10.1029/2006JF000631
  8. Ding YJ, Ye BS, Liu SY, Shen YP, Wang SL, Yang MX (2000) The observational study on permafrost hydrology on large scale in the Qinghai–Tibetan Plateau. Chin Sci Bull 45(2):208–214 (in Chinese)Google Scholar
  9. Driesse A, Thevenard D (2002) A test of Suehrcke’s sunshine radiation relationship using a global data set. Sol Energy 72:167–175CrossRefGoogle Scholar
  10. Eugster W, Rouse WR, Pielke RA Sr, Mcfadden JP, Baldocchi DD, Kittel TGF, Stuart Chapin F III, Liston GE, Vidale PL, Vaganov E, Chambers S (2000) Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob Change Biol 6(S1):84–115CrossRefGoogle Scholar
  11. Feng S, Tang MC, Wang DM (1998) New evidences for the Qinghai–Tibetan Plateau as a pilot region of climate change in China. Chin Sci Bull 43(6):633–636 (in Chinese)Google Scholar
  12. Flohn H (1968) Contributions to a meteorology of the Tibetan highlands. Colorado State University, Sci Paper 130:1–122Google Scholar
  13. Frauenfeld OW, Zhang TJ, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi: 10.1029/2003JD004245 Google Scholar
  14. Gao ZQ, Chae N, Kim J, Hong JK, Choi T, Lee H (2004) Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the simple biosphere model 2 (SiB2). J Geophys Res 109:D06102. doi: 10.1029/2003JD004089 Google Scholar
  15. Harris RB (2010) Rangeland degradation on the Qinghai–Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74(1):1–12CrossRefGoogle Scholar
  16. Hong JY, Kim J (2008) Simulation of surface radiation balance on the Tibetan Plateau. Geophys Res Lett 35:L08814. doi: 10.1029/2008GL033613 Google Scholar
  17. Huang ZS (1986) A preliminary analysis of the correlation between the state of heat and ultra-long wave in the Qinghai–Xizang Plateau. Geogr Res 5(1):32–41 (in Chinese)Google Scholar
  18. Ji GL, Yao LC, Yuan FM, Yang HY (1986) Characteristics of surface and atmospheric heating fields over Qinghai–Xizang Plateau during the winter in 1982. Scientia Sinica Ser B 29(8):876–888Google Scholar
  19. Ji GL, Shi XH, Gao WX (2001) The variation of surface heating field over northern Qinghai–Tibet Plateau and its effect on climate. Plateau Meteorol 20(3):239–244 (in Chinese)Google Scholar
  20. Kou YG, Zeng QZ, Xie WR, Xiao S (1981) Investigation of solar radiation on Qinghai–Xizang Plateau and its neighboring districts and the relation between the radiation and permafrost on it. J Glaciol Geocryol 3(4):25–32Google Scholar
  21. Krishnamurti TN, Ramanathan Y (1982) Sensitivity of the monsoon onset to different heating. Mon Weather Rev 39:1090–1306Google Scholar
  22. Kumar R, Umanand L (2005) Estimation of global radiation using clearness index model for sizing photovoltaic system. Renew Energy 30(15):2221–2233CrossRefGoogle Scholar
  23. Li DHW, Lam JC (2000) Solar heat gain factors and the implications for building designs in subtropical regions. Energy Build 32:47–55CrossRefGoogle Scholar
  24. Li DL, Ji GL, Lu LZ (2001) Impact of Tibetan Plateau surface heating field intensity on northern hemispherical general circulations and weather and climate of China. Sci China Ser D 31:390–399CrossRefGoogle Scholar
  25. Li R, Zhao L, Ding YJ, Shen YP, Du EJ, Liu GY (2009) The effect of global radiation budget on seasonally frozen depth in the Tibetan Plateau. J Glaciol Geocryol 31(3):422–430 (in Chinese)Google Scholar
  26. Li R, Zhao L, Ding YJ, Wang S, Ji GL, Xiao Y, Liu GY, Sun LC (2010) Monthly ratios of PAR to global solar radiation measured at northern Tibetan Plateau, China. Sol Energy 84(6):964–973CrossRefGoogle Scholar
  27. Li R, Zhao L, Ding YJ, Wu TH, Xiao Y, Du EJ, Liu GY, Qiao YP (2012) Temporal and spatial variations of the active layer along the Qinghai–Tibet Highway in a permafrost region. Chin Sci Bull 57(35):4609–4616CrossRefGoogle Scholar
  28. Li R, Zhao L, Wu TH, Ding YJ, Xin YF, Zou DF, Xiao Y, Jiao YL, Qin YH, Sun LC (2013) Temporal and spatial variations of global solar radiation over the Qinghai–Tibetan Plateau during the past 40 years. Theor Appl Climatol 113:573–583CrossRefGoogle Scholar
  29. Liston GE, Vidale PL, Vaganov E, Chambers S (2000) Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob Change Biol 6(S1):84–115CrossRefGoogle Scholar
  30. Lu Z, Piedrahita RH, Neto CDS (1998) Generation of daily and hourly solar radiation values for modeling water quality in aquaculture ponds. Trans ASAE 41:1853–1859CrossRefGoogle Scholar
  31. Lunardini VJ (1996) Climatic warming and the degradation of warm permafrost. Permafr Periglac Process 7(4):311–320CrossRefGoogle Scholar
  32. Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31(1):3–42CrossRefGoogle Scholar
  33. Mittaz C, Hoelzle M, Haeberli W (2000) First results and interpretation of energy-flux measurements of Alpine permafrost. Ann Glaciol 31:275–280CrossRefGoogle Scholar
  34. Nelson FE, Anisimov OA, Shiklomanov NI (2002) Climate change and hazard zonation in the Circum-Arctic permafrost regions. Nat Hazards 26:203–225CrossRefGoogle Scholar
  35. Pan BT, Li JJ (1996) Qinghai–Tibetan Plateau: a driver and amplifier of the global climatic change. J Lanzhou Univ Nat Sci 32(1):108–115 (in Chinese)Google Scholar
  36. Pang QQ, Zhao L, Li SX, Ding YJ (2012) Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change. Environ Earth Sci 66:849–857CrossRefGoogle Scholar
  37. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber B, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac Process 19:137–156CrossRefGoogle Scholar
  38. Schrott L (1991) Global solar radiation, soil temperature and permafrost in the Central Andes, Argentina: a progress report. Permafrost Periglac Process 2(1):59–66CrossRefGoogle Scholar
  39. Shi QQ, Liang SL (2013) Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 1. Methodol J Geophys Res Atmos 118:9642–9657. doi: 10.1002/jgrd.50720 CrossRefGoogle Scholar
  40. Souza JL, Nicácio RM, Moura MA (2005) Global solar radiation measurements in Maceió, Brazil. Renew Energy 30:1203–1220CrossRefGoogle Scholar
  41. Tao SY, Chen LS, Xu XD, Xiao YS (1999) The theory research advancement of TIPEX (part one). Meteorological press of China, Beijing (in preface page)Google Scholar
  42. Wang CH, Dong WJ, Wei ZG (2003) Study on relationship between the frozen-thaw process in Qinghai–Xizang Plateau and circulation in East-Asia. Chin J Geophys 46(3):309–316 (in Chinese)CrossRefGoogle Scholar
  43. Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69:191–224CrossRefGoogle Scholar
  44. Wu QB, Zhang TJ (2010) Changes in active layer thickness over the Qinghai–Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. doi: 10.1029/2009JD012974 Google Scholar
  45. Yao TD (2002) The dynamic characteristics of Cryosphere in the middle part on the Qinghai–Tibetan Plateau. Geological Press, Beijing China (in preface)Google Scholar
  46. Ye DZ (1981) Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull Am Meteor Soc 62:14–19CrossRefGoogle Scholar
  47. Ye DZ, Gao YX (1979) Tibetan Plateau meteorology. Science Press, Beijing, pp 89–101Google Scholar
  48. Zeng QZ, Xie YQ (1980) Discuss the heat effect of the Tibetan Plateau from the surface radiation balance and thermal balance. Chin Sci Bull 25(12):552–554 (in Chinese)Google Scholar
  49. Zhang TJ (2002) A important landmark of representation on the Chinese permafrost study. J Glaciol Geocryol 24(3):331–334 (in Chinese)Google Scholar
  50. Zhang TJ, Nelson FE, Gruber S (2007) Introduction to special section: Permafrost and seasonally frozen ground under a changing climate. J Geophys Res 112:F02S01. doi: 10.1029/2007JF000821 Google Scholar
  51. Zhang Y, Chen WJ, Riseborough DW (2008) Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Glob Planet Change 60:443–456CrossRefGoogle Scholar
  52. Zheng D, Zhang RZ, Yang QY (1979) On the natural zonation in the Qingai-Xizang Plateau. Acta Geographica Sinica 1–11(in Chinese)Google Scholar
  53. Zheng D, Lin ZY, Zhang XQ (2002) Advances in the research on the Qinghai–Tibet Plateau and global environmental change. Earth Sci Front 9(1):95–102 (in Chinese)Google Scholar
  54. Zhou YW, Qiu GQ, Guo DX, Li SD (2000) Frozen ground in China. Science Press, Beijing, pp 1–62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ren Li
    • 1
  • Lin Zhao
    • 1
  • Tonghua Wu
    • 1
    Email author
  • Yongjian Ding
    • 1
  • Yao Xiao
    • 1
  • Guojie Hu
    • 1
  • Defu Zou
    • 1
  • Wangping Li
    • 1
  • Wenjun Yu
    • 1
  • Yongliang Jiao
    • 1
  • Yanhui Qin
    • 1
  1. 1.Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations