Environmental Earth Sciences

, Volume 73, Issue 2, pp 649–662 | Cite as

Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia

  • Martin PfeifferEmail author
  • Gunsmaa Batbayar
  • Jürgen Hofmann
  • Konrad Siegfried
  • Daniel Karthe
  • Sonja Hahn-Tomer
Thematic Issue


Elevated levels of arsenic in drinking water are found in several parts of Asia. Prolonged intakes of even low concentrations typically have serious health effects. This research paper integrates results of various studies on arsenic contamination of ground, surface, waste and drinking water in north-central Mongolia. Samples were analyzed with the ARSOlux biosensor and the Arsenator field test kit as well as different spectrometric methods (ICP-MS, ICP-OES). Altogether 309 samples were tested for their arsenic concentration, 44 of them with more than one technique. In the study region, the enrichment of heavy metals in surface waters is often linked to mining and coal combustion. The highest concentration of arsenic (As) was detected in the effluent of a gold mine (up to 2,820 μg L−1) and in the ash basin of a thermal power plant (up to 1,170 μg L−1). Five of 54 drinking water samples and 16 of 184 river samples were found to contain As levels above the World Health Organization (WHO) maximum permissible limit (10 μg L−1), with a maximum of 300 μg L−1 As. In addition, elevated levels of uranium were detected. The degree and extent of As concentrations exceeding WHO standards were previously unknown and demonstrate the necessity for a more intensive screening as well as possible interventions concerning the intake of arsenic-contaminated drinking water. Preliminary results indicate that the ARSOlux biosensor technology is well suited for a precise quantification of arsenic content at low detection limits in regions where access to central laboratories is difficult.


Arsenic pollution Drinking water Gold mining Mongolia Upper Selenga River Basin 



This research was financially supported by the German Ministry of Education and Research (BMBF) (BMBF project No. 03300762) and the German Academic Exchange Service (DAAD) (Scholarship D 10 00351 for MP and No. A/12/97034 for GB). Special gratitude is owned to Prof. Dr. Galbadrakh Ragchaa, Department of Physics at National University of Mongolia, for use of his laboratory and help with literature research. We are grateful to Mr. Batzorig L., Vice Director of the Mongolian Central Geological Laboratory, and to Dr. Jürgen Mattusch of the Department Analytical Chemistry of the UFZ Leipzig. Special thanks are due to Ms. Gerel Osor (Mongolian University of Science and Technology, Darkhan) for conducting the regular monitoring since 2006 and to Andreas Koelsch (UFZ Leipzig) for producing the ARSOlux biosensors for our measuring campaign. We appreciate the help of Gongor Sergelen and Buyankhand Batsengee (National University of Mongolia) with the organization of the study and thank our Mongolian driver Batchuluun Tserendorj. The adjuvant comments on the manuscript by Eva Osterwalder (UFZ Leipzig) and four anonymous reviewers are gratefully acknowledged.

Supplementary material

12665_2013_3029_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 54 kb)
12665_2013_3029_MOESM2_ESM.pdf (26 kb)
Supplementary material 2 (PDF 26 kb)


  1. Aguilar-Muniz AU, Valdes-Perezgasga F, Garcia-Vargas GG (2013) Seasonal effects in arsenic levels in drinking water in the Lagunera region. 8th Ibero-American Congress on Sensors. Iop Publishing Ltd (421), BristolGoogle Scholar
  2. Batbayar G (2012) Arsenic content in water samples in Mongolia: using an ARSOlux test kit based on bioreporter. Master thesis, National University of Mongolia, UlaanbaatarGoogle Scholar
  3. Batimaa P, Tatsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. AIACC Working Paper No. 12. Accessed 22 July 2013
  4. Batjargal T, Otgonjargal E, Baek K, Yang JS (2010) Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J Hazard Mater 184(1–3):872–876. doi: 10.1016/j.jhazmat.2010.08.106 CrossRefGoogle Scholar
  5. Berezhnykh T, Marchenko O, Abasov N, Mordvinov V (2012) Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin. Geogr Nat Res 33(3):61–68. doi: 10.1134/S1875372812030079 Google Scholar
  6. Bhattacharya P, Hossain M, Rahman SN, Robinson C, Nath B, Rahman M, Islam MM, Von Bromssen M, Ahmed KM, Jacks G, Chowdhury D, Rahman M, Jakariya M, Persson LA, Vahter M (2011) Temporal and seasonal variability of arsenic in drinking water wells in Matlab, southeastern Bangladesh: a preliminary evaluation on the basis of a 4 year study. J Environ Sci Health A 46(11):1177–1184CrossRefGoogle Scholar
  7. Brumbaugh WG, Tillitt DE, May TW, Javzan C, Komov VT (2013) Environmental survey in the Tuul and Orkhon River basins of north-central Mongolia, 2010: metals and other elements in streambed sediment and floodplain soil. Environ Monit Assess 185:8991–9008CrossRefGoogle Scholar
  8. Chalov SR, Zavadsky AS, Belozerova EV, Bulacheva MP, Jarsjö J, Thorslund J, Yamkhin J (2012) Suspended and dissolved matter fluxes in the upper Selenga River Basin. Geogr Environ Sustain 2(5):78–94Google Scholar
  9. Chalov S, Kasimov N, Lychagin M, Belozerova E, Shinkareva G, Theuring P, Romanchenko A, Aleexevsky A, Garmaev E (2013) Water resources assessment of the Selenga-Baikal River System. Geo-Oeko 34(1–2):77–102Google Scholar
  10. Chalov S, Romanchenko A, Kasimov N, Belozerova E, Jarsjö J, Pietron J, Thorslund J (2014) Spatio-temporal variation of suspended load in the Selenga river basin. Environ Earth Sci (this issue)Google Scholar
  11. Dalai B, Ishiga H (2013) Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia. Environ Monit Assess 185(3):2869–2881. doi: 10.1007/s10661-012-2757-z CrossRefGoogle Scholar
  12. Daus B, Weiss H, Mattusch J, Wennrich R (2006) Preservation of arsenic species in water samples using phosphoric acid—Limitations and long-term stability. Talanta 69:430–434CrossRefGoogle Scholar
  13. Enkhdul T, Darjaa T, Dorj D (2010) Arsenic elimination in artifical lake of Gatsuurt gold mining area Mongolia. In: 2nd International symposium on health hazards of arsenic contamination of groundwater and its countermeasures, Miyazaki. 145–148Google Scholar
  14. Gandoljin N, Batbileg B, Enkhdul T, Darjaa TS (2010) Using GIS and remote sensing to monitor arsenic dispersal from a Gatsuurt mining area, Mongolia. In: The 31st Asian Conference on Remote Sensing (ACRS 2010), Hanoi. Accessed 26 June 2013
  15. Guo JX, Hu L, Yand PZ, Tanabe K, Miyatalre M, Chen Y (2007) Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A 42(12):1853–1858CrossRefGoogle Scholar
  16. Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of the groundwater composition on arsenic detection by bacterial biosensors. Microchim Acta 151:217–222CrossRefGoogle Scholar
  17. Hofmann J, Venohr M, Behrendt H, Opitz D (2010) Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Sci Technol 62(2):353–363. doi: 10.2166/wst.2010.262 CrossRefGoogle Scholar
  18. Hofmann J, Rode M, Theuring P (2013) Recent developments in river water quality in a typical Mongolian river basin, the Kharaa case study. Understanding freshwater quality problems in a changing world. In: Proceedings of H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, IAHS Publ. 361:1–9Google Scholar
  19. Hofmann J, Watson V, Scharaw, B (2014) Groundwater quality under stress: contaminants in the Kharaa river basin (Mongolia). Environ Earth Sci. doi: 10.1007/s12665-014-3148-2
  20. Hülsmann L, Geyer T, Schweitzer C, Priess J, Karthe D (2014) The Effect of Subarctic Conditions on Water Resources: initial results and limitations of the SWAT Model applied to the Kharaa River Catchment in Northern Mongolia. Environ Earth Sci (this issue)Google Scholar
  21. Inam E, Khantotong S, Kim KW, Tumendemberel B, Erdenetsetseg S, Puntsag T (2011) Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environ Geochem Health 33:57–69. doi: 10.1007/s10653-010-9347-1 CrossRefGoogle Scholar
  22. Karthe D, Chalov S, Theuring P, Belozerova E (2013) Integration of meso- and macroscale approaches for water resources monitoring and management in the Baikal-Selenga-basin. In: Chifflard P, Cyffka B, Karthe D, Wetzel K-F (eds) Beiträge zum 44. Jahrestreffen des Arbeitskreises Hydrologie. Geographica Augustana, Augsburg, pp 90–94Google Scholar
  23. Karthe D, Heldt S, Houdret A, Borchardt D (2014) Assessment of IWRM in a country under rapid transition: lessons learnt from the Kharaa River Basin, Mongolia. Environ Earth Sci (this issue)Google Scholar
  24. Kasimov NS, Kosheleva NE, Sorokina OI, Bazha SN, Gunin PD, Enkh-Amgalan S (2011a) Ecological-geochemical state of soils in Ulaanbaatar (Mongolia). Eurasian Soil Sci 44(7):709–721. doi: 10.1134/s106422931107009x CrossRefGoogle Scholar
  25. Kasimov NS, Kosheleva NE, Sorokina OI, Gunin PD, Bazha SN, Enkh-Amgalan S (2011b) Ecological–geochemical state of woody vegetation in Ulaanbaatar (Mongolia). Arid Ecosyst 1(4):201–213. doi: 10.1134/S2079096111040081 CrossRefGoogle Scholar
  26. Keshavarzi B, Moore F, Rastmanesh F, Kermani M (2012) Arsenic in the Muteh gold mining district, Isfahan, Iran. Environ Earth Sci 67(4):959–970. doi: 10.1007/s12665-012-1532-3 CrossRefGoogle Scholar
  27. Lamm SH, Wilson R, Lai S, Tucker SB, Li FX, He XZ, Luo SD, Byrd DM III (2006) Skin cancer, skin lesions, and the inorganic arsenic content of well water in Huhhot, Inner Mongolia. Proc Am Assoc Cancer Res Ann Meet 47:1070–1071Google Scholar
  28. Linhoff BS, Bennett PC, Puntsag T, Gerel O (2011) Geochemical evolution of uraniferous soda lakes in Eastern Mongolia. Environ Earth Sci 62(1):171–183. doi: 10.1007/s12665-010-0512-8 CrossRefGoogle Scholar
  29. Mattusch J, Wennrich R, Schmidt AC, Reisser W (2000) Determination of arsenic species in water, soils and plants. Fresenius Anal Chem 366:200–203CrossRefGoogle Scholar
  30. Menzel L, Hofmann J, Ibisch R (2011) Untersuchung von Wasser- und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen—Management im Kharaa-Einzugsgebiet (Mongolei). Hydrol Wasserbewirtsch 55(2):88–103Google Scholar
  31. Minderlein S, Menzel L (2014) Evapotranspiration and energy balance dynamics of a semi arid mountainous steppe and shrubland site in northern Mongolia. Environ Earth Sci (this issue)Google Scholar
  32. MNS (2005) Mongolian National Standard 0900—Environment, health protection, safety-drinking water—Hygienic requirements and quality control. Authority for standard and measurementGoogle Scholar
  33. MNS (2011) Mongolian National Standard 4943— Cleaned waste water for the environment—common requirements. Authority for standard and measurementGoogle Scholar
  34. Mongolian Ministry of Health (2004) Survey Report on Arsenic Determination in Mongolia. Ulaanbaatar: Ministry of Health, Public Health InstituteGoogle Scholar
  35. Momo Consortium (2009) Integrated water resources management for Central Asia: model region Mongolia (MoMo)—Case study in the Kharaa river basin—Final project report. September 2009. Available at Accessed 15 June 2013
  36. Mueller B, Berg M, Yao ZP, Zhang XF, Wang D, Pfluger A (2008) How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Sci Total Environ 402(2–3):232–247CrossRefGoogle Scholar
  37. Murao S, Tumenbayar B, Sera K, Futatsugawa S, Waza T (2004) Finding of high level arsenic for Mongolian Villagers’ Hair. Pixe 14(03n04):125–131. doi: 10.1142/S0129083504000185 CrossRefGoogle Scholar
  38. Murao S, Sera K, Tumenbayar B, Saijaa N, Uramgaa J (2011) High level of arsenic reaffirmed for human hairs in Mongolia. Pixe 21(03n04):119–124. doi: 10.1142/S0129083511002239 CrossRefGoogle Scholar
  39. Nriagu J, Nam DH, Ayanwola TA, Dinh H, Erdenechimeg E, Ochir C, Bolormaa TA (2012) High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Sci Total Environ 414:722–726. doi: 10.1016/j.scitotenv.2011.11.037 CrossRefGoogle Scholar
  40. Nriagu J, Johnson J, Samurkas C, Erdenechimeg E, Ochir C, Chandaga O (2013) Co-occurrence of high levels of uranium, arsenic, and molybdenum in groundwater of Dornogobi, Mongolia. Glob Health Perspect 1(1):45–54. doi: 10.5645/ghp2013.01.01.07 CrossRefGoogle Scholar
  41. Olkhanud PB (2012) Survey of Arsenic in Drinking Water in the Southern Gobi region of Mongolia. Master thesis, Johns Hopkins UniversityGoogle Scholar
  42. Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. RGS-IBG Book Series. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  43. Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson A (2013) Groundwater Arsenic contamination throughout China. Science 341:866–868. doi: 10.1126/science.1237484 CrossRefGoogle Scholar
  44. Siegfried K, Endes C, Bhuiyan AFMK, Kuppardt A, Mattusch J, van der Meer JR, Chatzinotas A, Harms H (2012) Field testing of arsenic in groundwater samples of Bangladesh using a test kit based on lyophilized bioreporter bacteria. Environ Sci Technol 46(6):3281–3287. doi: 10.1021/es203511k CrossRefGoogle Scholar
  45. Šimoník O (2012) Determination of selected environmental pollutants in tissue samples of livestock. Master thesis, Czech University of Life Sciences PragueGoogle Scholar
  46. Stocker J, Balluch D, Gsell M, Harms H, Feliciano JS, Daunert S, Malik KA, van der Meer JR (2003) Development of asset of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750CrossRefGoogle Scholar
  47. Thorslund J, Jarsjo J, Chalov SR, Belozerova EV (2012) Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monit 14(10):2780–2792. doi: 10.1039/c2em30643c CrossRefGoogle Scholar
  48. Trang PTK, Berg M, Viet PH, Van Mui N, Van Der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39(19):7625–7630. doi: 10.1021/es050992e CrossRefGoogle Scholar
  49. Tsetsegmaa T, Darjaa T, Dorj D (2009) Use of nitrous oxide–acetylene flame for determination of arsenic by AAS in geological samples. Mong J Chem Sci 7(315):4–7Google Scholar
  50. Unurtsetseg C, Bolormaa I, Erdenechimeg E (2012) Hygienic assessment and arsenic content in drinking water in Gobi provinces. Unpublished report. Public Health Institute of Mongolia, UlaanbaatarGoogle Scholar
  51. Wade TJ, Xia YJ, Wu KG, Li YH, Ning ZX, Le XC, Lu XF, Feng Y, He XZ, Mumford JL (2009) Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health 6(3):1107–1123. doi: 10.3390/ijerph6031107 CrossRefGoogle Scholar
  52. WHO (2011) Guidelines for drinking water quality 4th edn. World Health Organization, Geneva. Available at Accessed 22 July 2013
  53. Xia Y, Wade TJ, Wu K, Li Y, Ning Z, Le XC, He X, Chen B, Feng Y, Mumford JL, Xia Y, Wade TJ, Wu K, Li Y, Ning Z, Le XC, He X, Chen B, Feng Y, Mumford JL (2009) Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health 6(3):1010–1025CrossRefGoogle Scholar
  54. Zhang H (2013) Arsenic movement and traces in the groundwater from the Hetao area, Inner Mongolia. Environ Earth Sci 69(5):1579–1588. doi: 10.1007/s12665-012-1992-5 CrossRefGoogle Scholar
  55. ZKBS (2013) General recommendations. ARSOlux test system—risk assessment. Available at Accessed 13 May 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Pfeiffer
    • 1
    Email author
  • Gunsmaa Batbayar
    • 1
    • 2
  • Jürgen Hofmann
    • 3
  • Konrad Siegfried
    • 4
  • Daniel Karthe
    • 2
  • Sonja Hahn-Tomer
    • 4
  1. 1.School of Geography and GeologyNational University of MongoliaUlaanbaatarMongolia
  2. 2.Department Aquatic Ecosystem Analysis and ManagementHelmholtz Centre for Environmental ResearchMagdeburgGermany
  3. 3.Department EcohydrologyLeibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  4. 4.Department of Environmental MicrobiologyHelmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations