Advertisement

Environmental Earth Sciences

, Volume 72, Issue 3, pp 905–914 | Cite as

Geochemical, mineralogical and magnetic characteristics of vertical dust deposition in urban environment

  • Péter Sipos
  • Emő Márton
  • Zoltán May
  • Tibor Németh
  • Viktória Kovács Kis
Original Article

Abstract

Studies on composition and distribution of dust deposition are necessary for the risk assessment of dust to atmospheric quality. We studied the vertical distribution pattern of dust and metal (Cu, Fe, Pb, Zn) deposition up to 33 m height in urban environment. Integrated geochemical, mineralogical and magnetic study of the seasonally sampled dust helped to specify our knowledge on the use of magnetic susceptibility for tracking its deposition. Harmful dust and metal deposition may occur even at great heights and at the low-traffic side of buildings. Re-suspension of local surface materials dominates the dust deposition primarily in summer and spring due to weather conditions, and it may overwrite the influence of recent anthropogenic activities on dust composition. The accepted air-flow models should be modified by taking the local conditions (weather, morphology, etc.) into account. All studied metals showed strong enrichment in the dust and could be characterized by similar vertical deposition pattern to dust. The total susceptibility was found to be much more useful proxy for tracking dust and metal deposition than mass-specific susceptibility. Using the former, potential errors arising from sampling practice of settled dust could be eliminated. The most important heavy-metal-bearing phases were iron oxides and clay minerals. Their different behavior during the dust deposition is reflected by the vertical metal distribution patterns. Clay minerals originate primarily from re-suspension and may be one of the most important sources of potentially mobile heavy metals in such materials.

Keywords

Total susceptibility Heavy metals Vertical metal deposition Dust re-suspension Urban dust 

Notes

Acknowledgments

This study was financially supported by the Hungarian Scientific Research Fund (OTKA K 76317 and K 75395). Péter Sipos also thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

  1. Banerjee ADK (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut 123:95–105. doi: 10.1016/S0269-7491(02)00337-8 CrossRefGoogle Scholar
  2. Barrett JS, Taylor KG, Hudson-Edwards K, Charnock JM (2010) Solid-phase speciation of Pb in urban road dust sediment: a XANES and EXAFS study. Environ Sci Technol 44:2940–2946. doi: 10.1021/es903737k CrossRefGoogle Scholar
  3. Bartófi I (2000) Environmental technology (in Hungarian). Mezőgazda Kiadó, BudapestGoogle Scholar
  4. Booth CA, Shilton V, Fullen MA, Walden J, Worsley AT, Power AL (2006) Environmental magnetism: measuring, monitoring and modeling urban street dust pollution. In: Longhurst JWS and Brebbia CA (eds.) WIT transactions on ecology and the environment, vol 86, Air Pollution XIV. WIT Press, pp 333–342Google Scholar
  5. Duong TTT, Lee BK (2009) Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmos Environ 43:3502–3509. doi: 10.1016/j.atmosenv.2009.04.036 CrossRefGoogle Scholar
  6. Elzinga EJ, Gao Y, Fitts JP, Tappero R (2011) Iron speciation in urban dust. Atmos Environ 45:4528–4532CrossRefGoogle Scholar
  7. Farkas I, Weiszburg T (2006) Mineralogical investigation of settled and airborne dust collected from Cluj County, Romania. Földtani Közlöny 136:547–572Google Scholar
  8. Filipelli GM, Laidlaw MAS, Latimer JC, Raftis R (2005) Urban lead poisoning and medical geology: an unfinished story. GSA Today 15:4–11CrossRefGoogle Scholar
  9. Gautam P, Blaha U, Appel E (2005) Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos Environ 39:2201–2211. doi: 10.1016/j.atmosenv.2005.01.006 CrossRefGoogle Scholar
  10. Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci Total Environ 33:129–139. doi: 10.1016/0048-9697(84)90387-5 CrossRefGoogle Scholar
  11. Hunt A, Johnson DL, Thornton I (1993) Apportioning the sources of lead in house dusts in the London borough of Richmond, England. Sci Total Environ 138:183–206. doi: 10.1016/0048-9697(93)90414-2 CrossRefGoogle Scholar
  12. Inomata Y, Igarashi Y, Chiba M, Shinoda Y, Takahashi H (2009) Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba, Japan. Atmos Environ 43:4503–4512. doi: 10.1016/j.atmosenv.2009.06.048 CrossRefGoogle Scholar
  13. Ji Y, Feng Y, Wu J, Zhu T, Bai Z, Duan C (2008) Using geoaccumulation index to study source profiles of soil dust in China. J Environ Sci 20:571–578. doi: 10.1016/S1001-0742(08)62096-3 CrossRefGoogle Scholar
  14. Krolak E (2000) Heavy metals in falling dust in Eastern Mazowieckie province. Pol J Environ Stud 9:517–522Google Scholar
  15. Kvietkus K, Sakalys J, Valiulis D (2011) Trends of atmospheric heavy metal deposition in Lithuania. Lith J Phys 51:359–369. doi: 10.3952/physics.v51i4.2258 CrossRefGoogle Scholar
  16. Laidlaw MAS, Filippelli GM (2008) Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Appl Geochem 23:2021–2039. doi: 10.1016/j.appgeochem.2008.05.009 CrossRefGoogle Scholar
  17. Lu SG, Zheng YW, Bai SQ (2008) A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves. Atmos Environ 42:6431–6441. doi: 10.1016/j.atmosenv.2008.04.039 CrossRefGoogle Scholar
  18. Maher BA (2009) Rain and dust: magnetic record of climate and pollution. Elements 5:229–234. doi: 10.2113/gselements.5.4.229 CrossRefGoogle Scholar
  19. Manasreh WA (2010) Assessment of trace metals in street dusts of Mutah city, Karak, Jordan. Carpath J Earth Environ 5(1):5–12Google Scholar
  20. Márton E, Sipos P, Németh T, May Z (2011) Transport of pollutants around a high building: integrated magnetic, mineralogical and geochemical study. In: Conference Proceedings and Exhibitor’s Catalogue, 6th Congress of the Balkan Geophysical Society (3–6 Oct 2011, Budapest, Hungary), European Association of Geoscientists and Engineers, B9 1–6Google Scholar
  21. Micallef A, Deuchar CN, Colls JJ (1998) Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter. Sci Total Environ 215:209–216. doi: 10.1016/S0048-9697(98)00128-4 CrossRefGoogle Scholar
  22. Hungarian standard No. MSZ 21454/1-83 (1983) Test of solid impurities in ambient atmosphere. Determination of settled dust mass. Hungarian Standards Institution, G 23:1–6Google Scholar
  23. Muxwothy AR, Scmidbauer E, Petersen N (2002) Magnetic properties and Mössbauer spectra of urban particulate matter: a case study from Munich, Germany. Geophys J Inter 150:558–570. doi: 10.1046/j.1365-246X.2002.01725.x CrossRefGoogle Scholar
  24. Odabasi M, Muezzinoglu A, Bozlaker A (2002) Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmos Environ 36:5841–5851. doi: 10.1016/S1352-2310(02)00644-1 CrossRefGoogle Scholar
  25. Ódor L, Horváth I, Fügedi U (1997) Low-density geochemical mapping in Hungary. J Geochem Explor 60:55–66. doi: 10.1016/S0375-6742(97)00025-3 CrossRefGoogle Scholar
  26. Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113. doi: 10.1016/0378-7788(88)90026-6 CrossRefGoogle Scholar
  27. Panigrahy PK, Goswami G, Panda JD, Panda RK (2003) Differential comminution of gypsum in cements ground in different mills. Cem Concr Res 33:945–947. doi: 10.1016/S0008-8846(02)00992-4 CrossRefGoogle Scholar
  28. Parameswaran K, Vijayakumar G (1994) Effect of atmospheric relative humidity on aerosol size distribution. Indian J Radio Space 23:175–188Google Scholar
  29. Popescu GC, Dumitrescu L (2000) Heavy metals distribution in dust from the central part of Bucharest. Rom J Miner Dep 79:85–87Google Scholar
  30. Remeteiova D, Smincakova E, Florian K (2007) Study of the chemical properties of gravitation dust sediments. Microchim Acta 156:109–113. doi: 10.1007/s00604-006-0603-0 CrossRefGoogle Scholar
  31. Sakata M, Marumoto K (2004) Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler. Environ Sci Technol 38:2190–2197. doi: 10.1021/es030467k CrossRefGoogle Scholar
  32. Samet JM, Dominici F, Curriero FC, Zeger SL, Coursac I (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749. doi: 10.1056/NEJM200012143432401 CrossRefGoogle Scholar
  33. Shahin U, Yi SM, Paode RD, Holsen TM (2000) Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler. Environ Sci Technol 34:1887–1892. doi: 10.1021/es9907562 CrossRefGoogle Scholar
  34. Silva M, Kyser K, Beauchemin D (2007) Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry. Anal Chim Acta 584:447–454. doi: 10.1016/j.aca.2006.11.043 CrossRefGoogle Scholar
  35. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627. doi: 10.1007/s002540050473 CrossRefGoogle Scholar
  36. Tahri M, Bounakhla M, Ait Bouh H, Benyaich F, Noack Y, Essaid B (2012) Application of nuclear analytical techniques (XRF and NAA) to the evaluation of air quality in Moroccan cities—case of Meknes city. Carpath J Earth Environ 7(2):231–238Google Scholar
  37. UNEP and WHO (1992) Urban air pollution in megacities of the world. In: Earthwatch: global environmental system. Blackwell, OxfordGoogle Scholar
  38. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Fresca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37:155–182. doi: 10.1016/S1352-2310(02)00857-9 CrossRefGoogle Scholar
  39. Vento SD, Dachs J (2007) Atmospheric occurrence and deposition of polycyclic aromatic hydrocarbons in the northeast tropical and subtropical Atlantic ocean. Environ Sci Technol 41:5608–5613. doi: 10.1021/es0707660 CrossRefGoogle Scholar
  40. Wang LJ, Lu XW, Lei K (2011) Speciation and transfer of heavy metals in street dust, soil and river sediment of Baoji city. Urban Environ Urban Ecol 24:22–26Google Scholar
  41. Yi SM, Shahin U, Sivadechathep J, Sofuoglu SC, Holsen TM (2001) Overall elemental dry deposition velocities measured around Lake Michigan. Atmos Environ 35:1133–1140. doi: 10.1016/S1352-2310(00)00242-9 CrossRefGoogle Scholar
  42. Young TM, Heeraman DA, Sirin G, Ashbaugh LL (2002) Re-suspension of soil as a source of airborne lead near industrial facilities and highways. Environ Sci Technol 36:2484–2490. doi: 10.1021/es015609u CrossRefGoogle Scholar
  43. Zajzon N, Márton E, Sipos P, Kristály F, Németh T, kovács Kis V, Weiszburg T (2013) Integrated mineralogical and magnetic study of magnetic airborne particles from potential pollution sources in industrial-urban environment. Carpath J Earth Environ 8(1):179–186Google Scholar
  44. Zhao J, Peng P, Song J, Ma S, Sheng G, Fu J (2010) Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China. Air Qual Atmos Health 3:139–147. doi: 10.1007/s11869-009-0062-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Péter Sipos
    • 1
  • Emő Márton
    • 2
  • Zoltán May
    • 3
  • Tibor Németh
    • 1
  • Viktória Kovács Kis
    • 4
  1. 1.Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Paleomagnetic LaboratoryGeological and Geophysical Institute of HungaryBudapestHungary
  3. 3.Research Centre of Natural Sciences, Institute of Materials and Environmental ChemistryHungarian Academy of SciencesBudapestHungary
  4. 4.Institute of Technical Physics and Materials Science, Research Centre of Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations