Environmental Earth Sciences

, Volume 72, Issue 1, pp 233–242 | Cite as

Changes in irrigation management and quantity and quality of drainage water in a traditional irrigated land

  • I. García-Garizabal
  • J. Causapé
  • R. Abrahao
Original Article


Irrigated agriculture allows for the increase of agrarian yields and stability in food supply and raw materials, being, at the same time, responsible for the reduction of water resources availability and for the pollution by salts and nitrate. This work aims to analyze the impact of changes in irrigation management (establishment of an on-demand flood irrigated system, assignment of irrigation allowances and water payment for surface and irrigation water consumption) in a traditional irrigated land on drainage flow, electrical conductivity and nitrate concentration in irrigation return flows between the year 2001 and the period 2005–2008. Changes in water management significantly modified quantity (lower drainage) and quality (electrical conductivity and nitrate) of irrigation return flows, keeping similar evolution paths during the year with water ameliorants in summer due to the use of good irrigation water quality. Salinity in irrigation return flows is not a current problem in the area as electrical conductivity values in water did not exceed the limit established for water used in irrigation or intended for human consumption. Despite the fact that changes in irrigation management and crop distribution have reduced nitrate concentrations in irrigation return flows by 43 %, the water still presents nitrate values exceeding the 50 mg NO3 /l. Thus, nitrate remains as the main agro-environmental problem in this irrigation area. However, the nitrate concentration trends detected in this work mark the possibility of reaching nitrate values below 50 mg NO3 /l in the case of maintenance of the conditions in this agricultural system.


Irrigation return flows Electrical conductivity Nitrate Trend analysis 



This work has been possible thanks to Ministry of Education and Science finance in project AGL2005-17161-C05-01 and the formation scholarship BES-2006-12662. Thanks are extended to the Agrifood Research and Technology Centre of Aragón (CITA-DGA), to the Bardenas Canal Irrigation District no V and to the farmers for their valuable collaboration.


  1. Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no 56. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  2. Ayers RS, Westcot DW (1994) Water quality for agriculture. FAO Irrigation and Drainage Paper no 29. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  3. Basso LA, Machin J, Pellicer F (1990) Masa de sales exportada por la red de drenaje de Bardenas I. Monegros I y Cinca a las aguas superficiales de la cuenca del Ebro. An Estac Exp Aula Dei (Zaragoza) 20:163–181Google Scholar
  4. Beltran JM (1999) Irrigation with saline water: benefits and environmental impact. Agric Water Manag 40(2–3):183–194CrossRefGoogle Scholar
  5. Caballero R, Bustos A, Roman R (2001) Soil salinity under traditional and improved irrigation schedules in central Spain. Soil Sci Soc Am J 65(4):1210–1218CrossRefGoogle Scholar
  6. Causapé J (2004) La red de control de los regadíos de la cuenca del Ebro: metodología y aplicación al sistema de Bardenas. Confederación Hidrográfica del Ebro. Accessed June 2011
  7. Causapé J, Auqué L, Gimeno M, Mandado J, Quílez D, Aragüés R (2004a) Irrigation effects on the salinity of the Arba and Riguel Rivers (Spain): present diagnosis and expected evolution using geochemical models. Env Geol 45(5):703–715CrossRefGoogle Scholar
  8. Causapé J, Quílez D, Aragüés R (2004b) Assessment of irrigation and environmental quality at the hydrological basin level—I. Irrigation quality. Agric Water Manag 70(3):195–209Google Scholar
  9. Causapé J, Quílez D, Aragüés R (2004c) Assessment of irrigation and environmental quality at the hydrological basin level—II. Salt and nitrate loads in irrigation return flows. Agric Water Manag 70(3):211–228Google Scholar
  10. Cavero J, Beltrán A, Aragüés R (2003) Nitrate exported in the drainage water of two sprinkler irrigated watershed. J Env Qual 32:916–926CrossRefGoogle Scholar
  11. CHE (2006) Control de los retornos de las actividades agrarias de la cuenca del Ebro: evaluación de las tendencias de la calidad del agua control experimental de los retornos y propuesta de red de control. Accessed Sep 2011
  12. Díez JA, Tarquis A, Cartagena MC, Vallejo A (2006) Optimisation of N application for a maize crop grown in a shallow, irrigated soil. Span J Agric Res 4(4):373–380CrossRefGoogle Scholar
  13. EU (1998) Council directive 98/83/CE of 3 November 1998 imposed to the surface waters devoted to the production of water for human consumption. Off J L 330:32–54Google Scholar
  14. EU (2000) Directive 2000/60 of the European Parliament and of the Council establishing a framework for community action in the field of water pollution. Off J L 327:1–72Google Scholar
  15. EU (2008) Agricultural statistics. Main results 2006–2007. 2008 edition. Office for Official Publications of the European Communities. Luxemburg (Luxemburg). Accessed June 2012
  16. FAO (2002) World agriculture towards 2015/2030. An FAO perspective. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  17. FAO (2003) Unlocking the water potential of agriculture. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  18. Feng ZZ, Wang XK, Feng ZW (2005) Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agric Water Manag. doi: 10.1016/j.agwat.2004.07.001 Google Scholar
  19. Fuentes JL (1999) El suelo y los fertilizantes. Ministerio de Agricultura. Pesca y Alimentación. Mundi-Prensa, MadridGoogle Scholar
  20. GA (2011) Accessed June 2011
  21. García-Garizábal I, Causapé J (2010) Influence of irrigation water management on the quantity and quality of irrigation return flows. J Hydrol 385(1–4):36–43CrossRefGoogle Scholar
  22. García-Garizábal I, Causapé J, Abrahao R (2011) Application of the Irrigation Land Environmental Evaluation Tool for flood irrigation management and evaluation of water use. CATENA 87(2):260–267. doi: 10.1016/j.catena.2011.06.010
  23. García-Garizábal I, Causapé J, Abrahao R (2012) Nitrate contamination and its relationship with flood irrigation management. J Hydrol 442–443:15–22. doi: 10.1016/j.jhydrol.2012.03.017
  24. Gehl RJ, Schmidt JP, Stone LR, Schlegel AJ, Clark GA (2005) In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soils. J Environ Qual. doi: 10.2134/jeq2005.0047 Google Scholar
  25. INE (2008) Anuario de estadística agroalimentaria y pesquera 2007. Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid (España). Accessed Nov 2009
  26. Isidoro D, Quílez D, Aragüés R (2004) Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study. Agric Water Manag 64(2):123–142CrossRefGoogle Scholar
  27. Isidoro D, Quílez D, Aragüés R (2006a) Environmental impact of irrigation in La Violada District (Spain): I. Salt export patterns. J Env Qual 35:766–775CrossRefGoogle Scholar
  28. Isidoro D, Quílez D, Aragüés R (2006b) Environmental impact of irrigation in La Violada District (Spain): II. Nitrogen fertilization and nitrate export patterns in drainage water. J Env Qual 35:776–785CrossRefGoogle Scholar
  29. ITGE (1985) Investigación de los recursos hidráulicos totales de la cuenca del río Arba. Instituto Tecnológico Geominero de España, MadridGoogle Scholar
  30. ITGE (1995) Informe complementario del mapa geológico de Luna. Instituto Tecnológico Geominero de España. Hidrogeología de la hoja de Luna (27–11)Google Scholar
  31. Kendall MG (1975) Rank correlation method. Griffin, LondonGoogle Scholar
  32. Lasanta T, Mosch W, Pérez Rontomé MC, Navas A, Machín J, Maestro M (2002) Effects of irrigation on water salinization in semi-arid environments. A case study in Las Bardenas Spain. Cuadernos Invest Geogr 28:7–13Google Scholar
  33. Lassaletta L, Garcia-Gomez H, Gimeno BS, Rovira JV (2009) Agriculture-induced increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Sci Total Environ. doi: 10.1016/j.scitotenv.2009.08.002 Google Scholar
  34. Lecina S, Playán E, Isidoro D, Dechmi F, Causapé J, Faci JM (2005) Irrigation evaluation and simulation at the irrigation district V of Bardenas (Spain). Agric Water Manag 73(3):223–245CrossRefGoogle Scholar
  35. Mann HB (1945) Nonparametric test against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  36. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60CrossRefGoogle Scholar
  37. MAPA (2006) Hechos y cifras de la agricultura. La pesca y la alimentación en España. Ministerio de Agricultura. Pesca y Alimentación. Secretaría General Técnica. Madrid. Accessed June 2011
  38. Martínez-Cob A (2004) Revisión de las necesidades hídricas netas de los cultivos de la cuenca del Ebro. Accessed Sep 2011
  39. MICT (2007) Ahorro, eficiencia energética y fertilización nitrogenada. Ministerio de Industria. Comercio y Turismo. Madrid. Accessed June 2011
  40. MMA (2007) Environmental profile of Spain 2006: An indicador-based Report. Ministerio de Medio Ambiente. Centro de Publicaciones. Madrid. Accessed June 2011
  41. MMA (2010) Manual de interpretación y elaboración de informes de la Directiva 91/676/CEE. Ministerio de Medio Ambiente. Accessed June 2011
  42. Orús F, Sin E (2006) El balance del nitrógeno en la agricultura. Fertilización nitrogenada. Guía de actualización. Ed. Gobierno de Aragón. Departamento de Agricultura y Alimentación. Zaragoza, pp 11–21Google Scholar
  43. Quílez D, Yagüe MR, Isla R (2006) Lavado de nitrato y riego. Fertilización nitrogenada. Guía de actualización. Ed. Gobierno de Aragón. Departamento de Agricultura y Alimentación. Zaragoza, pp 39–51Google Scholar
  44. Ribbe L, Delgado P, Salgado E, Flugel WA (2008) Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed. Chile Desalination 226(1–3):13–20CrossRefGoogle Scholar
  45. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  46. Soil Survey Staff (1992) Keys to soil taxonomy. Pocahontas Press. Inc, BalcksbourgGoogle Scholar
  47. Tedeschi A, Beltrán A, Aragüés R (2001) Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain). Agric Water Manag 49:31–50CrossRefGoogle Scholar
  48. WHO (2004) Guidelines for drinking-water quality. Vol 1: Recommendations. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto Geológico y Minero de España (IGME)ZaragozaSpain
  2. 2.Federal University of Paraíba (UFPB), Center of Alternative and Renewable Energy, Department of Renewable Energy EngineeringJoão PessoaBrazil

Personalised recommendations