Environmental Earth Sciences

, Volume 72, Issue 1, pp 119–146 | Cite as

Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage

  • T. D. Tran NgocEmail author
  • R. Lefebvre
  • E. Konstantinovskaya
  • M. Malo
Original Article


The present paper provides a case study of the assessment of the potential for CO2 storage in the deep saline aquifers of the Bécancour region in southern Québec. This assessment was based on a hydrogeological and petrophysical characterization using existing and newly acquired core and well log data from hydrocarbon exploration wells. Analyses of data obtained from different sources provide a good understanding of the reservoir hydrogeology and petrophysics. Profiles of formation pressure, temperature, density, viscosity, porosity, permeability, and net pay were established for Lower Paleozoic sedimentary aquifers. Lateral hydraulic continuity is dominant at the regional scale, whereas vertical discontinuities are apparent for most physical and chemical properties. The Covey Hill sandstone appears as the most suitable saline aquifer for CO2 injection/storage. This unit is found at a depth of more than 1 km and has the following properties: fluid pressures exceed 14 MPa, temperature is above 35 °C, salinity is about 108,500 mg/l, matrix permeability is in the order of 3 × 10−16 m2 (0.3 mDarcy) with expected higher values of formation-scale permeability due to the presence of natural fractures, mean porosity is 6 %, net pay reaches 282 m, available pore volume per surface area is 17 m3/m2, rock compressibility is 2 × 10−9 Pa−1 and capillary displacement pressure of brine by CO2 is about 0.4 MPa. While the containment for CO2 storage in the Bécancour saline aquifers can be ensured by appropriate reservoir characteristics, the injectivity of CO2 and the storage capacity could be limiting factors due to the overall low permeability of aquifers. This characterization offers a solid basis for the subsequent development of a numerical hydrogeological model, which will be used for CO2 injection capacity estimation, CO2 injection scenarios and risk assessment.


CO2 geologic storage Characterization Deep saline aquifer St. Lawrence Platform 



This study was carried out at the INRS Research Chair on carbon dioxide geological storage with financial support from the Ministère du Développement durable, de l’Environnement et des Parcs du Québec. The authors are very grateful to Luc Massé and Junex Inc. for granting access to well log and drilling data and for close cooperation. They would like to thank R. Kofman and Pr. D. Schmitt (Canada Research Chair in Rock Physics, University of Alberta) for mercury injection measurements. Great thanks are also due to the four anonymous reviewers for their constructive suggestions and comments improving the quality of the final manuscript.


  1. Adams JJ, Bachu S (2002) Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids 2(4):257–271CrossRefGoogle Scholar
  2. Bachu S (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energ Convers Manage 43(1):87–102CrossRefGoogle Scholar
  3. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289. doi: 10.1007/s00254-003-0762-9 CrossRefGoogle Scholar
  4. Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energ Convers Manage 44(20):3151–3175. doi: 10.1016/S0196-8904(03)00101-8 CrossRefGoogle Scholar
  5. Bachu S, Bennion B (2008) Effects of in situ conditions on relative permeability characteristics of CO2-brine systems. Environ Geol 54(8):1707–1722. doi: 10.1007/s00254-007-0946-9 CrossRefGoogle Scholar
  6. Bachu S, Bennion DB (2009) Interfacial tension between CO2, freshwater, and brine in the range of pressure from 2 to 27 MPa, temperature from 20 to 125° C, and water salinity from 0 to 334,000 mg/L. J Chem Eng Data 54(3):765–775. doi: 10.1021/Je800529x CrossRefGoogle Scholar
  7. Bachu S, Underschultz JR, Hitchon B, Cotterill D (1993) Regional-scale subsurface hydrogeology in northeast Alberta. AGS/ARC report, EdmontonGoogle Scholar
  8. Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Con 1(4):430–443. doi: 10.1016/S1750-5836(07)00086-2 CrossRefGoogle Scholar
  9. BAPE (2010) APGQ Document DB25, Commission du BAPE (Bureau d’Audiences Publiques sur l’Environnement) sur les gaz de schistes. QuébecGoogle Scholar
  10. Barenblatt G, Zheltov I, Kochina I (1960) Basic concepts in the theory of seepage of homogeneous liquids in the fissured rocks. J Appl Math 24(5):1286–1303Google Scholar
  11. Barnes DA, Bacon DH, Stephen RK (2009) Geological sequestration of carbon dioxide in the Cambrian Mount Simon Sandstone: regional storage capacity, site characterization, and large-scale injection feasibility, Michigan Basin. Environ Geosci 16(3 (September 2009)):163–183. doi: 10.1306/eg.05080909009 CrossRefGoogle Scholar
  12. Basava-Reddi L, Wildgust N (2011) Caprock systems for CO2 geological storage in deep saline formations. In: Proceeding of 10th annual CCS Conference, Pittsburgh, Pennsylvania, 2–5 MayGoogle Scholar
  13. Batzle M, Wang ZJ (1992) Seismic properties of pore fluids. Geophysics 57(11):1396–1408CrossRefGoogle Scholar
  14. Boden TA, Marland G, Andres RJ (2011) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. doi: 10.3334/CDIAC/00001_V2011 Google Scholar
  15. Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Con 1(1):62–68. doi: 10.1016/S1750-5836(07)00027-8 CrossRefGoogle Scholar
  16. Breunese J, Remmelts G (2008) Potential for CO2 storage in depleted gas fields at the Dutch continental shelf. Phase 1: technical assessment. TNO report, NetherlandsGoogle Scholar
  17. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrogeology papers. Colorado State University, Fort Collins, ColoradoGoogle Scholar
  18. Brosse E, Badinier G, Blanchard F, Caspard E, Collin PY, Delmas J, Dezayes C, Dreux R, Dufournet A, Durst P, Fillacier S, Garcia D, Grataloup S, Hanot F, Hasanov V, Houel P, Kervevan C, Lansiart M, Lescanne M, Menjoz A, Monnet M, Mougin P, Nedelec B, Poutrel A, Rachez X, Renoux P, Rigollet C, Ruffier-Meray V, Saysset S, Thinon I, Thoraval A, Vidal-Gilbert S (2010) Selection and characterization of geological sites able to host a pilot-scale CO2 storage in the Paris Basin (GeoCarbone-PICOREF). Oil Gas Sci Technol 65(3):375–403. doi: 10.2516/Ogst/2009085 CrossRefGoogle Scholar
  19. Bryant E (1997) Climate process and change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Burke L (2011) Quantifying lateral migration of sequestered carbon dioxide based on rock properties and permeability classifications. In: Proceeding of paper presented at the 10th annual Carbon Capture and Sequestration Conference, Pittsburgh, Pennsylvania, 2–5 May 2011Google Scholar
  21. Castonguay S, Dietrich J, Lavoie D, Laliberte JY (2010) Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: Insights from interpretation of MRNQ seismic reflection data. B Can Petrol Geol 58(3):219–234CrossRefGoogle Scholar
  22. Chadwick RA, Arts R, Bernstone C, May F, Thibeau S, Zweigel P (2008) Best practice for the storage of CO2 in saline aquifers. Occasional publication No. 14. British Geological Survey, Keyworth, NottinghamGoogle Scholar
  23. Chalbaud C, Robin M, Lombard JM, Martin F, Egermann P, Bertin H (2009) Interfacial tension measurements and wettability evaluation for geological CO2 storage. Adv Water Resour 32(1):98–109. doi: 10.1016/j.advwatres.2008.10.012 CrossRefGoogle Scholar
  24. Chasset C, Jarsjo J, Erlstrom M, Cvetkovic V, Destouni G (2011) Scenario simulations of CO2 injection feasibility, plume migration and storage in a saline aquifer, Scania. Sweden. Int J Greenh Gas Con 5(5):1303–1318. doi: 10.1016/j.ijggc.2011.06.003 CrossRefGoogle Scholar
  25. Claprood M, Gloaguen E, Giroux B, Duchesne MJ, Konstantinovskaya E, Malo M (2012) Workflow using sparse vintage data for building a first geological and reservoir model for CO2 storage in deep saline aquifer. A case study in the St. Lawrence Platform, Canada. Greenh Gases Sci Technol 2:1–19. doi: 10.1002/ghg.1292 CrossRefGoogle Scholar
  26. CO2CRC (2008) Storage capacity estimation, site selection and characterisation for CO2 storage projects. Cooperative Research Centre for Greenhouse Gas Technologies, CanberraGoogle Scholar
  27. Corey AT (1954) The interrelation between gas and oil relative permeabilities. Producers monthly, pp 38–41Google Scholar
  28. Daniel RF, Kaldi JG (2009) Evaluating seal capacity of caprocks and intraformational barriers for CO2 containement. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media-State of the science. AAPG Studies in Geology 59, Tulsa, pp 335–345Google Scholar
  29. Diedro F, Parra T, Tassée N, Malo M (2011) Etude de la réactivité minérale des réservoirs géologiques en condition de pression et de température dans les Basses Terres du Saint-Laurent, Québec, Canada. INRS report, QuébecGoogle Scholar
  30. DOE-US (2010) Carbon sequestration atlas of the United States and Canada—third edition (Atlas III). National Energy Technology Laboratory, AlbanyGoogle Scholar
  31. Doughty C (2010) Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. Transp Porous Media 82(1):49–76. doi: 10.1007/s11242-009-9396-z CrossRefGoogle Scholar
  32. Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3(3):837–847CrossRefGoogle Scholar
  33. Doughty C, Pruess K, Benson SM, Hovorka SD, Knox PR, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio formation for geologic sequestration of CO2. In: Proceeding of paper presented at the First national conference on carbon sequestration, US Department of Energy, National Energy Technology Laboratory, Washington DC, 14–17 May 2001Google Scholar
  34. Doughty C, Freifeld BM, Trautz RC (2008) Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ Geol 54(8):1635–1656. doi: 10.1007/s00254-007-0942-0 CrossRefGoogle Scholar
  35. Doveton JH (1986) Log analysis of subsurface geology. Concepts and computer methods. Wiley, New YorkGoogle Scholar
  36. Espinoza DN, Kim SH, Santamarina JC (2011) CO2 geological storage–geotechnical implications. Ksce J Civ Eng 15(4):707–719. doi: 10.1007/s12205-011-0011-9 CrossRefGoogle Scholar
  37. Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent. Ministère de l’Énergie et des Ressources du Québec, QuébecGoogle Scholar
  38. Hall HN (1953) Compressibility of reservoir rocks. Trans AIME 198:309–311Google Scholar
  39. Hassler GL, Brunner E (1944) Measurement of capillary pressures in small core samples. Trans AIME 160:114–123Google Scholar
  40. Héroux Y, Lapalme R, Chagnon A (1975) Étude conclusive des grès de base du Groupe de Potsdam des Basses-Terres du Saint-Laurent. Rapport INRS-Pétrole, Québec, p 9Google Scholar
  41. Horner DR (1951) Pressure build-up in wells. In: Proceeding of third world pet. cong., 1951, pp 503–523Google Scholar
  42. Hosa A, Esentia M, Stewart J, Haszeldine S (2011) Injection of CO2 into saline formations: benchmarking worldwide projects. Chem Eng Res Des 89(9A):1855–1864. doi: 10.1016/j.cherd.2011.04.003 CrossRefGoogle Scholar
  43. IEA (2008) CO2 capture and storage: a key carbon abatement option. OECD/IEA, ParisGoogle Scholar
  44. IEA (2011) Prospect of limiting the global increase in temperature to 2 °C is getting bleaker. Accessed 23 July 2012
  45. IEA-GHG (2009) CCS Site Characterisation Criteria. IEA Greenhouse Gas RandD Programme, 2009/10, CheltenhamGoogle Scholar
  46. In Salah project website. Accessed July 7 2013
  47. IPCC (2005) Intergovernmental panel on climate change (IPCC) special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Mayer LA (eds) Cambridge University Press, Cambridge, New YorkGoogle Scholar
  48. IPCC (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  49. Jalalh AA (2006) Compressibility of porous rocks: part II. new relationships. Acta Geophys 54(4):399–412. doi: 10.2478/s11600-006-0029-4 CrossRefGoogle Scholar
  50. Junex Inc (2011) An Efficient Dust-Controller and De-icing Product. Accessed 14 September 2012
  51. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Drilling and Production Practice, American Petroleum Inst, Washington, pp 200–213Google Scholar
  52. Konstantinovskaya E, Malo M (2010) Lithostratigraphie et structure des Basses-Terres du Saint-Laurent dans les régions de Joliette, de Trois-Rivières et de Nicolet (Étude de terrain). INRS report R-1151, QuébecGoogle Scholar
  53. Konstantinovskaya E, Claprood M, Duchesne MJ, Malo M, Lefebvre R (2010) Le potentiel de stockage de CO2 expérimental dans les aquifères salins profonds de Bécancour: partie I, analyse des diagraphies et des profils sismiques. INRS report R-1150, QuébecGoogle Scholar
  54. Konstantinovskaya E, Tran Ngoc TD, Lefebvre R, Malo M (2011) Le potentiel de stockage expérimental du CO2 dans les aquifères salins profonds de Bécancour : partie II : évaluation de la porosité effective et de l’épaisseur productive nette. INRS report R-1266, QuébecGoogle Scholar
  55. Konstantinovskaya E, Malo M, Castillo DA (2012) Present-day stress analysis of the St. Lawrence Lowlands sedimentary basin (Canada) and implications for caprock integrity during CO2 injection operations. Tectonophysics 518:119–137. doi: 10.1016/j.tecto.2011.11.022 CrossRefGoogle Scholar
  56. Konstantinovskaya E, Rutqvist J, Malo M, Comeau FA, Claprood M (2013) Aspects géomécaniques de la séquestration géologique du CO2 dans les aquifères salins des Basses-Terres du Saint-Laurent. In: Proceeding of paper presented at the Congrès de l’Acfas: Colloque 217—La séquestration du carbone : solutions pour réduire et compenser nos émissions de CO2 dans l’atmosphère, Université Laval, Québec City, 6–10 May 2013Google Scholar
  57. Kuhn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Forster A, Kolditz O, Schafer D, Clean-Partners (2012) CLEAN: project overview on CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany). Environ Earth Sci 67(2):311–321. doi: 10.1007/s12665-012-1714-z CrossRefGoogle Scholar
  58. Kumar A, Noh M, Pope GA, Sepehrnoori K, Bryant S, Lake LW (2004) Resevoir simulation of CO2 storage in deep salin aquifers. In: Proceeding of paper presented at SPE/DOE 14th Symposium on Improved Oil Recovery, Tulsa, USA, 17–21 April 2004Google Scholar
  59. Land CS (1969) Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. SPE J 9:149–156Google Scholar
  60. Lavoie JY (1979) Étude du puits Husky Bruyères No. 1 quant à son potentiel «réservoir-souterrain». Memo au dossier dans : JUNEX Inc., Husky Bruyères no. 1, rapport de modification de puits, 2002. Dossier 1971OA158-05, Québec in FrenchGoogle Scholar
  61. Lavoie JY (1992) Évaluation potentiel gazier de la propriété St-Laurent dans le puis Soquip-Petrofina-Bécancour No. 1. Les Ressources Naturelles Jaltin Inc. Dossier 1980OA196-05, Québec in FrenchGoogle Scholar
  62. Lavoie D (1994) Diachronous tectonic collapse of the ordovician continental-margin, Eastern Canada—Comparison between the Quebec Reentrant and St-Lawrence Promontory. Can J Earth Sci 31(8):1309–1319. doi: 10.1139/E94-113 CrossRefGoogle Scholar
  63. Lefebvre P (1980) Gradient géothermique dans les Basses Terres. Rapport N° 9206. Sigpeg-MRNF, p 9Google Scholar
  64. Lenormand R, Touboul E, Zarcone C (1988) Numerical-models and experiments on immiscible displacements in porous-media. J Fluid Mech 189:165–187CrossRefGoogle Scholar
  65. Lewandowska J, Tran Ngoc TD, Vauclin M, Bertin H (2008) Water drainage in double-porosity soils: experiments and micro-macro modeling. J Geotech Geoenviron 134(2):231–243. doi: 10.1061/(ASCE)1090-0241 CrossRefGoogle Scholar
  66. Lucier A, Zoback M, Gupta N, Ramakrishnan TS (2006) Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region. Environ Geosci 13(2 (June 2009)):85–103. doi: 10.1306/eg.11230505010 CrossRefGoogle Scholar
  67. Machel HG (2005) Geological and hydrogeological evaluation of the Nisku Q-Pool in Alberta, Canada, for H2S and/or CO2 storage. Oil Gas Sci Technol 60(1):51–65. doi: 10.2516/Ogst:2005005 CrossRefGoogle Scholar
  68. Malo M, Bédard K (2012) Basin-scale assessment for CO2 storage prospectivity in the Province of Québec, Canada. Energy Procedia 23:487–494CrossRefGoogle Scholar
  69. Martens S, Kempka T, Liebscher A, Luth S, Moller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kuhn M, Grp K (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67(2):323–334. doi: 10.1007/s12665-012-1672-5 CrossRefGoogle Scholar
  70. Massé L (2009) Geological storage in Québec. In: Proceeding of paper presented at the 1er Colloque de la Chaire en séquestration géologique du CO2 : La technologie du CSC au Québec: Qui sont les acteurs, Québec, 20 April 2009Google Scholar
  71. Massé L, Marcil JS, Lavoie J (2013) CO2 en phase supercritique: Déterminer le gradient géothermique à partir des puits pétroliers et gaziers. In: Proceeding of Congrès de l’Acfas: Colloque 217—La séquestration du carbone : solutions pour réduire et compenser nos émissions de CO2 dans l’atmosphère, Uni. Laval, Québec City, 6–10 May 2013Google Scholar
  72. Mathias SA, Hardisty PE, Trudell MR, Zimmerman RW (2009) Screening and selection of sites for CO2 sequestration based on pressure buildup. Int J Greenh Gas Con 3(5):577–585. doi: 10.1016/j.ijggc.2009.05.002 CrossRefGoogle Scholar
  73. Matton M, Rheault M, Konstantinovskaya E, Malo M (2011) Lineament-based structural map of the St. Lawrence Lowlands proposed from remote sensing and geophysics.In: Proceeding of paper presented at the annual conference of the Quebec oil and gas association, Montréal, 24–25 October 2011Google Scholar
  74. Michael K, Bachu S, Buschkuehle BF, Haug K, Talman S (2009) Comprehensive characterization of a potential site for CO2 geological storage in central Alberta, Canada. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media-state of the science. AAPG Studies in Geology 59, Tulsa, pp 227–240Google Scholar
  75. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int J Greenh Gas Con 4(4):659–667. doi: 10.1016/j.ijggc.2009.12.011 CrossRefGoogle Scholar
  76. Mualem YA (1976) New model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522CrossRefGoogle Scholar
  77. Nordbotten JM, Celia MA, Bachu S (2005) Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transport Porous Med 58(3):339–360. doi: 10.1007/s11242-004-0670-9 CrossRefGoogle Scholar
  78. Pinti DL, Beland-Otis C, Tremblay A, Castro MC, Hall CM, Marcil JS, Lavoie JY, Lapointe R (2011) Fossil brines preserved in the St-Lawrence Lowlands, Quebec, Canada as revealed by their chemistry and noble gas isotopes. Geochim Cosmochim Ac 75(15):4228–4243. doi: 10.1016/j.gca.2011.05.006 CrossRefGoogle Scholar
  79. Purcell WR (1949) Capillary pressure—their measurements using mercury and the calculation of permeability therefrom. AIME Petroleum Trans 186:39–48Google Scholar
  80. Sourcewatch (2009) Existing U.S. Coal Plants. Accessed 17 July 2012
  81. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100°K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596CrossRefGoogle Scholar
  82. Spycher N, Pruess K (13) CO2-H2O mixtures in the geological sequestration of CO2: II. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochim Cosmochim Ac 69:3309–3320. doi: 10.1016/j.gca.2005.01.015 CrossRefGoogle Scholar
  83. Thériault R (2012) Caractérisation du Shale d’Utica et du Groupe de Lorraine, Basses-Terres du Saint-Laurent. Partie 2: Interprétation géologique. Géologie Québec, QuébecGoogle Scholar
  84. Thériault R, Laliberté JY, Brisebois D, Rheault M (2005) Fingerprinting of the Ottawa-Bonnechère and Saguenay grabens under the St. Lawrence Lowlands and Québec Appalachians: prime targets for hydrocarbon exploration paper presented at the Geological Association of Canada, Halifax, Nova Scotia, 2005Google Scholar
  85. Timmerman EH (1982) Practical reservoir engineering. Part 1: methods for improving accuracy or input into equations and computer programs. PennWell, TulsaGoogle Scholar
  86. Tran Ngoc TD, Konstantinovskaya E, Lefebvre R, Malo M, Massé L (2011a) Geotechnical characterization of deep saline aquifers for CO2 geological storage in the Bécancour region, Québec, Canada. In: Phung DL (ed) Geotechnics for Sustainable Development-Geotec Ha Noi, Ha Noi, Viet Nam, 6–7 October 2011. Construction Publishing House, Hanoi, pp 623–632Google Scholar
  87. Tran Ngoc TD, Konstantinovskaya E, Lefebvre R, Malo M (2011b) Caractérisation hydrogéologique et pétrophysique des aquifères salins profonds de la région de Bécancour pour leur potentiel de séquestration géologique du CO2. INRS report R-1318, QuébecGoogle Scholar
  88. Tran Ngoc TD, Lewandowska J, Vauclin M, Bertin H (2011c) Two-scale modeling of solute dispersion in unsaturated double-porosity media: homogenization and experimental validation. Int J Numer Anal Met Geomech 35(14):1536–1559. doi: 10.1002/Nag.967 CrossRefGoogle Scholar
  89. Tran Ngoc TD, Lefebvre R, Malo M, Doughty C (2012) Feasibility of CO2 injection in the deep saline aquifers of the Bécancour region, Québec (Canada). In: Finsterle S, Hawkes D, Moridis G et al (eds) TOUGH Symposium, Berkeley, Calif., 17–19 September 2012, pp 757–766Google Scholar
  90. Tran Ngoc TD, Lefebvre R, Malo M, Doughty C (2013) Estimating CO2 storage capacity in saline aquifers: Revisited concept and application to the Bécancour area (Québec, Canada). Geophy Res Abstracts, vol. 15, EGU2013-3622Google Scholar
  91. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  92. VNA-News (2007) Mỹ đẩy mạnh kế hoạch xây dựng hàng trăm nhà máy nhiệt điện mới. Accessed 17 July 2012
  93. Wiese B, Nimtz M, Klatt M, Kuhn M (2010) Sensitivities of injection rates for single well CO2 injection into saline aquifers. Chem Erde-Geochem 70:165–172. doi: 10.1016/j.chemer.2010.05.009 CrossRefGoogle Scholar
  94. Yang DY, Gu YG, Tontiwachwuthikul P (2008) Wettability determination of the reservoir brine-reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures. Energ Fuel 22(1):504–509. doi: 10.1021/Ef700383x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. D. Tran Ngoc
    • 1
    Email author
  • R. Lefebvre
    • 1
  • E. Konstantinovskaya
    • 1
  • M. Malo
    • 1
  1. 1.Institut national de la recherche scientifiqueCentre Eau Terre Environnement (INRS-ETE)QuébecCanada

Personalised recommendations