Environmental Earth Sciences

, Volume 70, Issue 8, pp 3935–3943 | Cite as

Impacts of the use of the geological subsurface for energy storage: an investigation concept

  • Sebastian Bauer
  • Christof Beyer
  • Frank Dethlefsen
  • Peter Dietrich
  • Rainer Duttmann
  • Markus Ebert
  • Volker Feeser
  • Uwe Görke
  • Ralf Köber
  • Olaf Kolditz
  • Wolfgang Rabbel
  • Tom Schanz
  • Dirk Schäfer
  • Hilke Würdemann
  • Andreas Dahmke
International Viewpoint and news

Abstract

New methods and technologies for energy storage are required to make a transitionto renewable energy sources; in Germany this transition is termed Energiewende”. Subsurface georeservoirs, such as salt caverns for hydrogen, compressed air, and methane storage or porous formations for heat and gas storage, offer the possibility of hosting large amounts of energy. When employing these geological storage facilities, an adequate system and process understanding is essential in order to characterize and to predict the complex and interacting effects on other types of subsurface use and on protected entities. In order to make optimal use of georeservoirs, a comprehensive use planning of the subsurface is required that allocates specific uses to appropriate subsurface locations. This paper presents a generic methodology on how subsurface use planning can be conducted and how its scientific basis can be developed. Although synthetic, realistic scenarios for the use of the geological underground for energy storage are parameterized and numerically simulated, accounting for other kinds of subsurface use already in place. From these scenario analyses, the imposed coupled hydraulic, thermal, mechanical and chemical processes, as well as mutual effects and influences on protected entities are assessed and generalized. Based on these, a first methodology for large-scale planning of the geological subsurface considering different surface and subsurface usage scenarios may also be derived.

References

  1. Arning E, Kölling M, Panteleit B, Reichling J, Schulz H-D (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 11(1):27–39CrossRefGoogle Scholar
  2. Baldschuhn R, Frisch U, Kockel F (1996) Geotektonischer Atlas von Nordwestdeutschland und Deutsche Nordsee. Geol. Jahrbuch A 153, HannoverGoogle Scholar
  3. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420. doi:10.1029/2004WR003878 CrossRefGoogle Scholar
  4. Bauer S, Class H, Ebert M, Feeser V, Götze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67(2):351–367. doi:10.1007/s12665-012-1707-y CrossRefGoogle Scholar
  5. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenhouse Gas Control 19:220–233. doi:10.1016/j.ijggc.2013.09.002 CrossRefGoogle Scholar
  6. Benisch K, Köhn D, al Hagrey S, Rabbel W, Bauer S (2013) Assessment and verification of a combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. EAGE Sustainable Earth Sciences 2013—Technologies for Sustainable Use of the Deep Sub-surface, Pau, FranceGoogle Scholar
  7. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87(1–2):73–95. doi:10.1016/j.jconhyd.2006.04.006 CrossRefGoogle Scholar
  8. Beyer C, Li D, de Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II—coupled reactive transport simulation. Environ Earth Sci 67(2):573–588. doi:10.1007/s12665-012-1684-1 CrossRefGoogle Scholar
  9. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3(2):181–194. doi:10.1016/j.ijggc.2008.08.002 CrossRefGoogle Scholar
  10. BMU (2012) Erneuerbare Energien in Zahlen—Internet-Update ausgewählter Daten. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. (in German), Bonn, GermanyGoogle Scholar
  11. Brielmann H, Lueders T, Schreglmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16(2):77–91CrossRefGoogle Scholar
  12. Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda S, Jin M, Krug S, Labregere D, Beni AD, Pawar RJ et al (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13(4):409–434. doi:10.1007/s10596-009-9146-x CrossRefGoogle Scholar
  13. Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. 18th World Hydrogen Energy Conference 2010, Essen/Germany, 16–21/05/2010Google Scholar
  14. De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas Reservoir. Part I—From experimental data to a reference geochemical model. Environ Earth Sci 76(2):563–572. doi:10.1007/s12665-012-1725-9 CrossRefGoogle Scholar
  15. Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modelling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117CrossRefGoogle Scholar
  16. Dethlefsen F, Ebert M, Dahmke A (2013) A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environ Earth Sci. doi:10.1007/s12665-013-2627-1
  17. Evans DJ (2009) An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology. Report RR605, British Geological Survey, 2008Google Scholar
  18. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2012) Reactive modelling of CO2 intrusion into freshwater aquifers: current requirements, approaches and limitations to account for temperature and pressure effects. Environ Earth Sci 67(8):2269–2283. doi:10.1007/s12665-012-1673-9 CrossRefGoogle Scholar
  19. Griffioen J, Appelo CAJ (1993) Nature and extent of carbonate precipitation during aquifer thermal energy storage. Appl Geochem 8(2):161–176CrossRefGoogle Scholar
  20. Großmann J, Dahmke A (2013) Chances and risks of geologic CO2 storage. In: Hou MZ, Xie H, Were P (eds) Clean energy systems in the subsurface: Production, storage and conversion, Springer Series in Geomechanics and Geoengineering. Springer, Berlin. doi:10.1007/978-3-642-37849-2_3 Google Scholar
  21. Hagrey al SA (2012) 2D model study of CO2 plumes in saline reservoirs by borehole resistivity tomography. Int J Geophys 2011, 12. doi:10.1155/2011/805059
  22. Hagrey al SA, Strahser M, Rabbel W (2013) Seismic and geoelectric modelling studies of parameters controlling CO2 geostorage in saline reservoirs. Int J Greenhouse Gas Control, in press, doi:10.1016/j.ijggc.2013.01.041, IJGGC-856
  23. Hähnlein S, Blum P, Bayer P (2011) Oberflächennahe Geothermie–aktuelle rechtliche Situation in Deutschland. Grundwasser 16(2):69–75CrossRefGoogle Scholar
  24. Hou Z, Gou TaronJ, Görke U-J, Kolditz O (2012) Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): a benchmarking study for code comparison. Environ Earth Sci 67(2):549–561. doi:10.1007/s12665-012-1703-2 CrossRefGoogle Scholar
  25. IEA (International Energy Agency) (2009) Prospects for large-scale energy storage in decarbonised power grids. OECD/IEA, ParisGoogle Scholar
  26. IEA (International Energy Agency) (2013) World Energy Outlook Special Report 2013: Redrawing the Energy Climate Map. OECD/IEA, ParisGoogle Scholar
  27. Jesußek A, Grandel S, Dahmke A (2013) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69(6):1999–2012CrossRefGoogle Scholar
  28. Köhn D, De Nil D, Kurzmann A, Przebindowska A, Bohlen T (2012) On the influence of model parametrization in elastic full waveform tomography. Geophys J Int 191(1):325–345CrossRefGoogle Scholar
  29. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke U-J, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012a) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599. doi:10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  30. Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke U-J, Kalbacher T, Park C-H, Sauer U, Schütze C, Shao HB, Singh AK, Taron J, Wang W, Watanabe N (2012b) A systematic benchmarking approach for geo-logic CO2 injection and storage. Environ Earth Sci 67(2):613–632. doi:10.1007/s12665-012-1656-5 CrossRefGoogle Scholar
  31. Kolditz O, Jakobs LA, Huenges E, Kohl T (2013) Geothermal energy: a glimpse at the state of the field and an introduction to the journal. Geotherm Energy 1:1. doi:10.1186/2195-9706-1-1 CrossRefGoogle Scholar
  32. Kwon PS, Ostergaard PA (2012) Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050. Energy 46(1):275–282. doi:10.1016/j.energy.2012.08.022 CrossRefGoogle Scholar
  33. Larsen LE, Jepsen MR, Frederiksen P (2013) Scenarios for biofuel demands, biomass production and land use—The case of Denmark. Biomass Bioenergy 55:27–40. doi:10.1016/j.biombioe.2012.08.015 CrossRefGoogle Scholar
  34. LBEG (2012) Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle 128(11):412–423Google Scholar
  35. Lemieux JM (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19(4):757–778CrossRefGoogle Scholar
  36. Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011) Microbial impact on the operation of a geothermal cold storage in a shallow aquifer-influence of the microbial community composition on filter clogging. Grundwasser 16(2):93–104CrossRefGoogle Scholar
  37. Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm W, Würdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17:311–327CrossRefGoogle Scholar
  38. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2013) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotechnica. doi:10.1007/s11440-013-0234-7
  39. Lord AS (2009) Overview of geologic storage of natural gas with an emphasis of assessing the feasibility of storing hydrogen, SAND2009-5878. Sandia National Laboratories, AlbuquerqueCrossRefGoogle Scholar
  40. Mathieson A, Midgley J, Dodds K, Wreight I, Ringrose P, Saoul N (2010) CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Leading Edge 29(2):216–222CrossRefGoogle Scholar
  41. Michael K, Golab A, Shulakova V, Ennis King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: A review of the experience from existing storage operations. Int J Greenhouse Gas Control 4:659–667CrossRefGoogle Scholar
  42. Mitiku A, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci. doi:10.1007/s12665-013-2580-z
  43. Mitiku A, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2-water-rock interactions in a potential storage formation of the north German sedimentary basin. Appl Geochem 36:168–186. doi:10.1016/j.apgeochem.2013.06.008 CrossRefGoogle Scholar
  44. Müller K, Städter M, Rachow F, Hoffmannbeck D, Schmeißer D (2013) Sabatier-based CO2-methanation by catalytic conversion. Environ Earth Sci. doi:10.1007/s12665-013-2609-3
  45. Onuma T, Ohkawa S (2009) Detection of surface deformation related with CO2 injection by DInSAR at In Salah, Algeria. Energy Procedia 1(1):2177–2184CrossRefGoogle Scholar
  46. Rutqvist J, Vasco D, Myer L (2009) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenhouse Gas Control 4(2):225–230. doi:10.1016/j.ijggc.2009.10.017 CrossRefGoogle Scholar
  47. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegradation J 15(6):453–465CrossRefGoogle Scholar
  48. Schäfer F, Walter L, Class H, Müller C (2011) The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci. doi:10.1007/s12665-011-1184-8
  49. Shaw R, Attree M, Jackson T (2010) Developing electricity distribution networks and their regulation to support sustainable energy. Energy Policy 38(10):5927–5937. doi:10.1016/j.enpol.2010.05.046 CrossRefGoogle Scholar
  50. UBA (Umweltbundesamt) (2010) Energieziel 2050: 100% Strom aus erneuerbaren Quellen. T. Klaus, C. Vollmer, K. Werner, H. Lehmann and K. Müschen (eds.), in German, Dessau-Roßlau, GermanyGoogle Scholar
  51. Watanabe N, McDermott C, Wang W, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media. Comput Mech 45(4):263–280. doi:10.1007/s00466-009-0445-9 CrossRefGoogle Scholar
  52. Watanabe N, Wang W, Taron J, Gorke U-J, Kolditz O (2012) Lower-dimensional interface elements using local enrichments and application for a coupled hydromechanical problem in fractured rock. Int J Numer Meth Eng 90(8):1010–1034. doi:10.1002/nme.3353 Google Scholar
  53. Weyer H (2013) Legal framework for the coordination of competing uses of the underground in Germany. In: Hou MZ, Xie H, Were P (eds) Clean energy systems in the subsurface: Production, storage and conversion, Springer Series in Geomechanics and Geoengineering. Springer, Berlin. doi:10.1007/978-3-642-37849-2_2 Google Scholar
  54. WHG (Wasserhaushaltsgesetz) (2010) § 47 Bewirtschaftungsziele für das Grundwasser, Gesetz zur Ordnung des WasserhaushaltsGoogle Scholar
  55. Yildirim E, Sarac S, Asian A (2012) Energy consumption and economic growth in the USA: evidence from renewable energy. Renew Sustain Energy Rev 16(9):6770–6774. doi:10.1016/j.rser.2012.09.004 CrossRefGoogle Scholar
  56. Yucekaya A (2013) The operational economics of compressed air energy storage systems under uncertainty. Renew Sustain Energy Rev 22:298–305. doi:10.1016/j.rser.2013.01.047 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Bauer
    • 1
  • Christof Beyer
    • 1
  • Frank Dethlefsen
    • 1
  • Peter Dietrich
    • 3
  • Rainer Duttmann
    • 2
  • Markus Ebert
    • 1
  • Volker Feeser
    • 1
  • Uwe Görke
    • 3
  • Ralf Köber
    • 1
  • Olaf Kolditz
    • 3
    • 6
  • Wolfgang Rabbel
    • 1
  • Tom Schanz
    • 5
  • Dirk Schäfer
    • 1
  • Hilke Würdemann
    • 4
  • Andreas Dahmke
    • 1
  1. 1.Institute for GeosciencesChristian-Albrechts-University KielKielGermany
  2. 2.Geographical InstituteChristian-Albrechts-University KielKielGermany
  3. 3.Helmholtz Centre for Environmental Research GmbH-UFZLeipzigGermany
  4. 4.German Research Centre for Geosciences-GFZPotsdamGermany
  5. 5.Chair Foundation Engineering Soil and Rock MechanicsRuhr-University BochumBochumGermany
  6. 6.Applied Environmental System AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations