Advertisement

Environmental Earth Sciences

, Volume 71, Issue 10, pp 4497–4511 | Cite as

Use of isotopic signatures for the determination of natural recharge and chemical characterization of groundwaters: the case of Horombe plateau area, SW Madagascar

  • J.-J. Rahobisoa
  • J. Rajaobelison
  • C. Schuth
  • A. KalliorasEmail author
  • V. Ramaroson
Original Article

Abstract

The necessity for accurate determination of groundwater recharge is an important issue for the “smart mining” of groundwater resources, especially in hydrologically sensitive regions. Different techniques and methods have been widely reported in literature, and isotope hydrology has found to be one of the major fields of the study. This paper presents the combination of different techniques for analyzing the recharge/discharge mechanisms within a large catchment area in SW Madagascar, by correlating different isotopic signatures, piezometric conditions, major ion water chemistry from ground- and surface-water samples (including their physical characteristics from in situ measurements), and also geological structures present within the study area. It provides, among others, a detailed description on the geologic and hydrogeologic regime of the Horombe Plateau, based on field data obtained from a well-distributed monitoring network within the study area, which is envisaged to serve as the conceptual model for future groundwater modeling studies.

Keywords

Groundwater recharge Stable isotope hydrology Tritium isotopes Horombe plateau Madagascar 

Notes

Acknowledgments

This study has been conducted in the framework of cooperation between the Institute of Applied Geosciences, Technical University of Darmstadt (Germany), and the Earth Sciences Department, Faculty of Sciences, University of Antananarivo (Madagascar). The first author wishes to acknowledge the financial support, in the form of PhD scholarship, by the German Academic Exchange Service (Deutscher Akademisher Austausch Dienst, DAAD). The essential support of the following colleagues in Madagascar is also greatly acknowledged: Rolland Pascal Razafitsalama (African Bank for Development, Madagascar), Gervais Andriamiharitsoa (Madagascar Institut National des Sciences et Techniques Nucléaires, Madagascar-INSTN), Harilala Randrianarisoa (Ministry of Water, Madagascar), Mahavonjiniaina Andriamamonjy (Ministry of Water, Madagascar), Zina Seheno Rakotoaridera (Madagascar Institut National des Sciences et Techniques Nucléaires, Madagascar-INSTN), Raoelina Andriambololona (Madagascar Institut National des Sciences et Techniques Nucléaires, Madagascar-INSTN).

References

  1. Abdalla OAE (2009) Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in north White Nile Rift, Sudan. Hydrogeol J 17:679–692CrossRefGoogle Scholar
  2. Adanu EA (1991) Source and recharge of groundwater in the basement terrain in the Zharia-Kaduna area, Nigeria: applying stable isotopes. J Afr Earth Sci 13(2):229–234CrossRefGoogle Scholar
  3. Adomako D, Osae S, Akiti TT, Faye S, Maloszewski P (2011) Geochemical and isotopic studies of groundwater conditions in the Densu River Basin of Ghana. Environ Earth Sci 62(5):1071–1084CrossRefGoogle Scholar
  4. Alagbe SA (2002) Groundwater resources of river Kan Gimi Basin, north-central, Nigeria. Environ Geol 42:404–413CrossRefGoogle Scholar
  5. Al-Charideh A (2012) Geochemical and isotopic characterization of groundwater from shallow and deep limestone aquifers system of Aleppo basin (north Syria). Environ Earth Sci 65(4):1157–1168CrossRefGoogle Scholar
  6. Alyamani MS (2001) Isotopic composition of rainfall and ground-water recharge in the western province of Saudi Arabia. J Arid Environ 49:751–760CrossRefGoogle Scholar
  7. Ammann L (2003) Cation exchange and adsorption on clays and clay minerals. Universität, Mathematisch-Naturwissenschaftliche Fakultät, Germany, Kiel, p 114Google Scholar
  8. Anku YS, Banoeng-Yakubo B, Asiedu DK, Yidana SM (2009) Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environ Geol 58:989–997CrossRefGoogle Scholar
  9. Appelo CAJ (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Res Res 30:2793–2805CrossRefGoogle Scholar
  10. Appelo CAJ, Postma A (1993) Geochemistry, groundwater and pollution. A. A. Balkema, Rotterdam, p 535Google Scholar
  11. Bakari SS, Aagaard P, Vogt RD, Ruden F, Johansen I, Vuai SA (2012) Delineation of groundwater provenance in a coastal aquifer using statistical and isotopic methods, Southeast Tanzania. Environ Earth Sci 66(3):889–902CrossRefGoogle Scholar
  12. Besairie H (1932) Recherches géologiques à Madagascar (Geological researches in Madagascar). Thèse, Paris., Bull Soc Sc Nat Toulouse, 60, 2è fascGoogle Scholar
  13. Besairie H (1967) The precambrian of Madagascar. In: Rankama K (ed) The precambrian. Wiley, London, pp 133–142Google Scholar
  14. Besairie H (1973) Madagascar: 1:2 000 000 geological map. Serv Géol MadGoogle Scholar
  15. Bresson Y (1959) Note hydrologique sur les cours d’eau de la région semi-aride de Madagascar (Hydrological note on the rivers of the Madagascar semi-arid region) Mémoires de l’Institut Scientifique de Madagascar. Série D, Tome IX (in French)Google Scholar
  16. Cao SK, Feng Q, Su YH, Chang ZQ, Xi HY (2011) Research on the water use efficiency and foliar nutrient status of Populus euphratica and Tamarix ramosissima in the extreme arid region of China. Environ Earth Sci 62(8):1597–1607CrossRefGoogle Scholar
  17. deWit MJ, Bowring SA, Ashwal LD, Randrianasolo LG, Morel VPI, Rambeloson RA (2001) Age and tectonic evolution of neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics 20(1):1–45CrossRefGoogle Scholar
  18. Diaw M, Faye S, Stichler W, Maloszewski P (2012) Isotopic and geochemical characteristics of groundwater in the Senegal river delta aquifer: implication of recharge and flow regime. Environ Earth Sci 66(4):1011–1020CrossRefGoogle Scholar
  19. Dobereiner L, Durville JL, Restituito J (1993) Weathering of the massiac gneiss (Massif Central, France). Bull Intern Ass Eng Geol 47(1):79–96CrossRefGoogle Scholar
  20. Elliot T, Andrews JN, Edmunds WM (1999) Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire basins, UK. Appl Geochem 14:333–363CrossRefGoogle Scholar
  21. Fetter CW (1988) Applied hydrogeology. Merrill, A Bell and Howell Information Co, Toronto, p 529Google Scholar
  22. Gorgoni C, Martinelli G, Sighinolfi GP (1982) Isotopic evidence of paleowaters in the Po sedimentary basin (Northern Italy). Geochem J 16:51–61CrossRefGoogle Scholar
  23. Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2011) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63(6):1355–1368CrossRefGoogle Scholar
  24. Hottin G (1976) Présentation et essai d’interprétation du Precambrien de Madagascar (Presentation and interpretation test of the Madagascar Precambrian rocks). Bull Bur Rec Geol Mm Fr Ser 2 4:117–153 (in French)Google Scholar
  25. Jayasena HAH, Chandrajith R, Dissanayake CB (2008) Spatial variation of isotope composition in precipitation in a tropical environment: a case study from the Deduru Oya river basin, Sri Lanka. Hydrol Proc 22:4565–4570CrossRefGoogle Scholar
  26. Kattan Z (1997) Chemical and environmental isotope study of precipitation in Syria. J Arid Environ 35:601–615CrossRefGoogle Scholar
  27. Kennedy WQ (1964) The structural differentiation of Africa in the Pan-African (500 m.y.): Tectonic episode, Ann Rep Inst Afr Geol, 8, session 1962–1963, pp 48–49, Leeds Univ., LeedsGoogle Scholar
  28. Kortatsi BK, Anku YSA, Anornu GK (2009) Characterization and appraisal of facets influencing geochemistry of groundwater in the Kulpawn sub-basin of the White Volta Basin, Ghana. Environ Geol 58(6):1349–1359CrossRefGoogle Scholar
  29. Kröner A, Braun I, Jeakel P (1996) Zircon geochronology of anatetic melts and residues from a high-grade pelitic assemblage at Ihosy, southern Madagascar: evidence from Pan-African granulite metamorphism. Geol Mag 133:311–322CrossRefGoogle Scholar
  30. Liu Y, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain––plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464–465:116–126CrossRefGoogle Scholar
  31. Lloyd JW (1965) The hydrochemistry of the aquifers of Northern Jordan. J Hydrol 3:319–330CrossRefGoogle Scholar
  32. Lohman SW et al (1972) Definitions of selected ground-water terms. Revisions and conceptual refinements. US Geological Survey Water-Supply Paper 1988, 21pGoogle Scholar
  33. Lu JM, Wilkinson M, Haszeldine RS, Boyce AJ (2011) Carbonate cements in miller field of the UK North Sea: a natural analog for mineral trapping in CO2 geological storage. Environ Earth Sci 62(3):507–517CrossRefGoogle Scholar
  34. Martelat JE, Nicollet C, Lanreaux JM, Vodal G, Rakotondrazafy R (1997) Lithospheric tectonic structures developed under high grade metamorphism in the southern part of Madagascar. Geodin Acta 10:94–144Google Scholar
  35. Martelat JE, Nicollet C, Lanreaux JM, Vodal G, Rakotondrazafy R (2000) Strain pattern and late precambrian deformation history in southern Madagascar. Precamb Res 102:1–20CrossRefGoogle Scholar
  36. McIntosh JC, Walter LM (2006) Paleowaters in Silurian–Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the late Pleistocene. Geochim Cosmochim Acta 70:2454–2479CrossRefGoogle Scholar
  37. Ministere de l’environnement, des eaux et forets and convention des nations unies sur la lutte contre la desertification (2003) Troisieme rapport national sur la mise en oeuvre de la convention sur la lute contre la desertification. (Third national report on the convention implementation on the fight against the desertification) pp 128 (in French)Google Scholar
  38. Navada SV, Nair AR, Rao SM, Paliwall BL, Doshi CS (1993) Groundwater recharge studies in arid region of Jalore, Rajasthan using isotope techniques. J Arid Environ 24:125–133CrossRefGoogle Scholar
  39. Noizet G (1967) Contribution à l’étude géochimique des formations métamorphiques du faciès granulite dans le Sud de Madagascar (Contribution to the geochemical study of the metamorphic formations of granulite facies in southern Madagascar). Thèse Nancy (in French)Google Scholar
  40. Noizet G (1969) Sur l’origine et la classification des pyroxenites Androyennes du sud de Madagascar (On the origin and the classification of Androyan pyroxenites of southern Madagascar). CR Sem Géol Mad, 155–159 (in French)Google Scholar
  41. Paquette JL, Nédélec A, Moine B, Rakotondrazafy M (1994) U-Pb single zircon Pb evaporation and Sm-Nd isotopic study of granulite domain in SE Madagascar. J Geol 102:523–538CrossRefGoogle Scholar
  42. Prasanna MV, Chidambaram S, Gireesh TV, Ali TVJ (2011) A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environ Earth Sci 63(1):31–47CrossRefGoogle Scholar
  43. Ramesh H, Mahesha A (2008) Simulation of Varada aquifer system for sustainable groundwater development. J Irr Drain Eng 134(3):387–399CrossRefGoogle Scholar
  44. Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization, Library of Congress, Cataliging-in-Publication data. CRC Press, Inc, Boca Raton, p 257Google Scholar
  45. Salem SBH, Chkir N, Zouari K, Cognard-Plancq AL, Valles V, Marc V (2012) Natural and artificial recharge investigation in the Zeroud Basin, central Tunisia: impact of Sidi Saad Dam storage. Environ Earth Sci 66(4):1099–1110CrossRefGoogle Scholar
  46. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  47. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds MW, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Proc 20(15):3335–3370CrossRefGoogle Scholar
  48. Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the black forest region. Appl Geochem 12:237–254CrossRefGoogle Scholar
  49. Subyani AM (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ Geol 46:741–749CrossRefGoogle Scholar
  50. Tucker RD, Ashwal LD, Handke MJ, Hamilton MA, Le Grange M, Rambeloson RA (1999) U-Pb geochronology and Isotope geochemistry of the Archean and proterozoic rocks of north-central Madagascar. J Geol 107:135–153CrossRefGoogle Scholar
  51. US Department of the Interior, US Geological Survey (1997) Estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. USGS, Fact Sheet FS–179–97, 4pGoogle Scholar
  52. Venturelli G, Toscani L, Mucchino C, Voltolini C (2000) Study of the water-rock interactions of spring waters in the northern Apennines. Anal Chim 90:359–368Google Scholar
  53. Windley BF, Razafiniparany A, Razakamanana T, Ackermand D (1994) Tectonic framework of the precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geol Rundsch 83:642–659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J.-J. Rahobisoa
    • 1
  • J. Rajaobelison
    • 2
  • C. Schuth
    • 3
  • A. Kallioras
    • 4
    • 5
    Email author
  • V. Ramaroson
    • 2
  1. 1.Faculty of Sciences, Earth Sciences DepartmentUniversity of AntananarivoAntananarivoMadagascar
  2. 2.Madagascar Institut National des Sciences et Techniques Nucléaires (INSTN)AntananarivoMadagascar
  3. 3.Institute of Applied GeosciencesTechnical University of DarmstadtDarmstadtGermany
  4. 4.School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece
  5. 5.Helmholtz Centre for Environmental Research-UFZLeipzigGermany

Personalised recommendations