Environmental Earth Sciences

, Volume 71, Issue 10, pp 4421–4431 | Cite as

Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate

  • Manika Gupta
  • Prashant K. Srivastava
  • Tanvir Islam
  • Asnor Muizan Bin Ishak
Original Article


The Tropical Rainfall Measuring Mission (TRMM) is a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. In this study, the daily rainfall from TRMM has been utilized to simulate the soil moisture content up to 30 cm vertical soil profile of at an interval depth of 15 cm by using the HYDRUS 1D numerical model for the three plots. The simulated soil moisture content using ground-based rainfall and TRMM-derived rainfall measurements indicate an agreeable goodness of fit between the both. The Nash–Sutcliffe efficiency using ground-based and TRMM-derived rainfall was found in the range of 0.90–0.68 and 0.70–0.40, respectively. The input data sensitivity analysis of precipitation combined with different irrigation treatment indicates a high dependency of soil moisture content with rainfall input. The overall analysis reveals that TRMM rainfall is promising for soil moisture prediction in absence of ground-based measurements of soil moisture.


TRMM Rainfall Soil moisture Predictive modelling HYDRUS 1D 



The financial support to M. Gupta from University Grant Commission, Government of India, is highly acknowledged. The authors would also like to thank National Institute of Hydrology, Roorkee, for providing facilities for soil physical analysis. The authors are thankful to Prof. J. Šimůnek for his time to time support for HYDRUS 1D.


  1. Aksoy M, Johnson JT (2013) A Study of SMOS RFI over North AmericaGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:6541Google Scholar
  3. Chahine MT (1992) The hydrological cycle and its influence on climate. Nature 359(6394):373–380CrossRefGoogle Scholar
  4. Collischonn B, Collischonn W, Tucci CEM (2008) Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. J Hydrol 360(1):207–216CrossRefGoogle Scholar
  5. Dirksen C (2000) Unsaturated hydraulic conductivity. Soil Analysis, Physical Methods, 2nd edn. Marcel Dekker Inc., New York, pp 183–237 (Revised and expanded)Google Scholar
  6. Duncan J, Biggs EM (2012) Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl Geogr 34:626–638CrossRefGoogle Scholar
  7. Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Centre for Agricultural Publishing and DocumentationGoogle Scholar
  8. Gao H, Wood E, Jackson T, Drusch M, Bindlish R (2006) Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J Hydrometeorol 7(1):23–38CrossRefGoogle Scholar
  9. Gupta M (2012) A study on pesticide mobility and persistence for geo-environmental pollution. PhD Thesis, Indian Institute of Technology (IIT), DelhiGoogle Scholar
  10. Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35(2):233–245CrossRefGoogle Scholar
  11. Gupta M, Srivastava PK (2012) Evaluation of TRMM rainfall for soil moisture prediction in a sub tropical climate. Prediction in Ungauged basin (PUBS) symposium co-organized by Delft University of Technology, Delft, Netherlands and IAHS, 22–25 October 2012Google Scholar
  12. Gupta M, Garg N, Joshi H, Sharma M (2012a) Persistence and mobility of 2, 4-D in unsaturated soil zone under winter wheat crop in sub-tropical region of India. Agric Ecosyst Environ 146(1):60–72CrossRefGoogle Scholar
  13. Gupta M, Srivastava PK, Islam T (2012b) Assessment of TRMM rainfall for vertical soil moisture prediction: Implication through HYDRUS 1D. In: The 4th TRMM and GPM International Science Conference Tokyo, JapanGoogle Scholar
  14. Hong Y, Adler RF, Huffman GJ, Pierce H (2010) Applications of TRMM-based multi-satellite precipitation estimation for global runoff prediction: Prototyping a global flood modeling system. In: Satellite Rainfall Applications for Surface Hydrology. Springer, Berlin, pp 245–265Google Scholar
  15. Hou AY, Skofronick-Jackson G, Kummerow CD, Shepherd JM (2008) 6 Global precipitation measurement. In: Precipitation: advances in measurement, estimation and prediction, p 131Google Scholar
  16. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55CrossRefGoogle Scholar
  17. Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ, Hossain F, Gebremichael M (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Satellite rainfall applications for surface hydrology, pp 3–22Google Scholar
  18. Ishak AM, Bray M, Remesan R, Han D (2011) Seasonal evaluation of rainfall estimation by four cumulus parameterization schemes and their sensitivity analysis. Hydrol Process 26(7):1062–1078CrossRefGoogle Scholar
  19. Ishak AM, Remesan R, Srivastava PK, Islam T, Han D (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manag 27(1):1–23CrossRefGoogle Scholar
  20. Islam T, Rico-Ramirez MA, Han D, Srivastava PK (2012a) A Joss–Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges. Atmos Sci Lett 13(2):139–150. doi: 10.1002/asl.376 CrossRefGoogle Scholar
  21. Islam T, Rico-Ramirez MA, Han D, Srivastava PK (2012b) Using S-band dual polarized radar for convective/stratiform rain indexing and the correspondence with AMSR-E GSFC profiling algorithm. Adv Space Res 50(10):1383–1390. http://dx.doi.org/10.1016/j.asr.2012.07.011 CrossRefGoogle Scholar
  22. Islam T, Rico-Ramirez MA, Han D, Srivastava PK, Ishak AM (2012c) Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J Atmos Solar Terr Phys 77:194–208CrossRefGoogle Scholar
  23. Kerr YH, Waldteufel P, Wigneron J-P, Martinuzzi J, Font J, Berger M (2001) Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosc Remote Sens 39(8):1729–1735CrossRefGoogle Scholar
  24. Klute A (1986a) Methods of soil analysis. Part 1. Physical and mineralogical methods. vol 2. American Society of Agronomy, Inc., USAGoogle Scholar
  25. Klute A (1986b) Water retention: laboratory methods, methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy (USA):635–662Google Scholar
  26. Kumar R, Das I, Mittal A, Gairola R, Pokhrel S, Agarwal VK (2005) Precipitation estimation from radar and radiometric observations from TRMM data using artificial neural networks. In: Proceedings of XXVIIIth general assembly of URSI-2005, pp 23–29Google Scholar
  27. Kumar P, Sharma LK, Pandey PC, Sinha S, Nathawat MS (2012) Geospatial strategy for tropical forest-wildlife reserve biomass estimationGoogle Scholar
  28. Lorenz EN Predictability (1996) A problem partly solved. In: Proceedings of the Seminar on PredictabilityGoogle Scholar
  29. Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane J (2009) Precipitation: measurement, remote sensing, climatology and modeling. Atmos Res 94(4):512–533CrossRefGoogle Scholar
  30. Monteith J (1965) Evaporation and environment. pp 205–234Google Scholar
  31. Mualem Y (1976) New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour Res 12(3):513–522CrossRefGoogle Scholar
  32. Nair S, SRINIVASAN G, NEMANI R (2009) Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J Meteorol Soc Japan Ser II 87(6):927–939CrossRefGoogle Scholar
  33. Nash JE, Sutcliffe J (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  34. Nicholson S (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63(3):615–641CrossRefGoogle Scholar
  35. Pal JS, Eltahir EAB (2001) Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. J Clim 14(6):1227–1242CrossRefGoogle Scholar
  36. Patel D, Srivastava P (2013) Flood Hazards Mitigation analysis using remote sensing and GIS: correspondence with town planning scheme. Water Resour Manag 75:1–16. doi: 10.1007/s11269-013-0291-6 Google Scholar
  37. Patel D, Gajjar C, Srivastava P (2013) Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective. Environ Earth Sci 69(8):2643–2656CrossRefGoogle Scholar
  38. Penman H (1956) Estimating evaporation. Trans Am Geophys Union 37(1):43–50CrossRefGoogle Scholar
  39. Pinori S, Crapolicchio R, Mecklenburg S (2008) Preparing the ESA-SMOS (soil moisture and ocean salinity) mission-overview of the user data products and data distribution strategy. In: Microwave Radiometry and Remote Sensing of the Environment, 2008 (MICRORAD 2008). IEEE, pp 1–4Google Scholar
  40. Shi X, Wen J, Wang L, Zhang T, Tian H, Wang X, Liu R, Zhang J (2010) Regional soil moisture retrievals and simulations from assimilation of satellite microwave brightness temperature observations. Environ Earth Sci 61(6):1289–1299CrossRefGoogle Scholar
  41. Šimůnek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7(2):782CrossRefGoogle Scholar
  42. Šimůnek J, Sejna M, Van Genuchten MT (2005a) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California, Riverside, Research reports 240Google Scholar
  43. Šimůnek J, Van Genuchten MT, Sejna M (2005b) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California, Riverside, Research reports 240Google Scholar
  44. Šimůnek J, Jacques D, Van Genuchten MT, Mallants D (2006) Multicomponent geochemical transport modeling using HYDRUS-1D and HP1. J Am Water Resour Assoc 42:1537–1547CrossRefGoogle Scholar
  45. Sivapalan M (2006) Predictions in ungauged basins: promise and progress, vol 303. IAHS Press, OxfordshireGoogle Scholar
  46. Sivapalan M, Takeuchi K, Franks S, Gupta V, Karambiri H, Lakshmi V, Liang X, McDonnell J, Mendiondo E, O’connell P (2003) IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48(6):857–880CrossRefGoogle Scholar
  47. Srivastava PK, Han D, Rico-Ramirez MA (2012a) Assessment of SMOS satellite derived soil moisture for soil moisture deficit estimation. Prediction in Ungauged basin (PUBS) symposium, Delft University of Technology, Delft, Netherlands and IAHS, 22–25 October 2012Google Scholar
  48. Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012b) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250–1265. doi: 10.1016/j.asr.2012.06.032 CrossRefGoogle Scholar
  49. Srivastava PK, Han D, Ramirez MR, Islam T (2013a) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manag 27(8):3127–3144. doi: 10.1007/s11269-013-0337-9 CrossRefGoogle Scholar
  50. Srivastava PK, Han D, Rico Ramirez M, Islam T (2013b) Sensitivity and Uncertainty analysis of Mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process. doi: 10.1002/hyp.9946
  51. Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013c) Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol. doi: 101016/jjhydrol201306021
  52. Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013d) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model. Atmos Sci Lett 14(2):118–125. doi: 10.1002/asl2.427 CrossRefGoogle Scholar
  53. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  54. Vignolles C, Lacaux JP, Tourre YM, Bigeard G, Ndione JA, Lafaye M (2009) Rift valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping. Geosp Health 3(2):211–220Google Scholar
  55. Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J Geophys Res 108(D19):4611CrossRefGoogle Scholar
  56. Zamora RJ, Ralph FM, Clark E, Schneider T (2011) The NOAA hydrometeorology Testbed soil moisture observing networks: design, instrumentation, and preliminary results. J Atmos Oceanic Technol 28(9):1129–1140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manika Gupta
    • 1
  • Prashant K. Srivastava
    • 2
  • Tanvir Islam
    • 3
    • 5
    • 6
  • Asnor Muizan Bin Ishak
    • 4
  1. 1.Department of Civil EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of Civil Engineering, Water and Environment Management Research CentreUniversity of BristolBristolUK
  3. 3.National Oceanic and Atmospheric Administration (NOAA), NESDIS Center for Satellite Applications and Research/STAR/SMCDCollege ParkUSA
  4. 4.Division of Water Resources Management and Hydrology, Department of Irrigation and DrainageMinistry of Natural Resources and EnvironmentKuala LumpurMalaysia
  5. 5.Institute of Industrial SciencesUniversity of TokyoTokyoJapan
  6. 6.Cooperative Institute for Research in the AtmosphereColorado State UniversityFort CollinsUSA

Personalised recommendations