Advertisement

Environmental Earth Sciences

, Volume 71, Issue 9, pp 4061–4069 | Cite as

Guano-derived δ13C-based paleo-hydroclimate record from Gaura cu Musca Cave, SW Romania

  • Bogdan P. Onac
  • Ferenc L. Forray
  • Jonathan G. Wynn
  • Alexandra M. Giurgiu
Original Article

Abstract

The δ13C values of 23 unevenly spaced guano samples from a 17-cm long clay sediment profile in Gaura cu Muscă Cave (GM), in SW Romania, made it possible to preliminarily characterize the Medieval Warm Period summer hydroclimate regime. The beginning of the sequence (AD 990) was rather wet for more than a century, before becoming progressively drier. After a brief, yet distinct wet period around AD 1170, drier conditions, with a possible shift from C3 to a mixed C3-dominated/C4 type vegetation (2 ‰ lower δ13C values), prevailed for almost half a century before the climate became colder and wetter at the onset of the Little Ice Age, when bats left the cave. The guano-inferred wet and dry intervals from the GM Cave are mirrored by changes in the color and amount of clay accumulated in the cave. They also agree well with reconstructions based on pollen and charcoal from peat bogs and δ13C and δ18O on speleothems from other Romanian sites. Overall, these results indicate that the δ13C of bat guano can provide a sensitive record of the short-term coupling between local/regional climate and the plant–insect–bat–guano system.

Keywords

Guano Cave Carbon isotopes Paleoclimate Romania 

Notes

Acknowledgments

The authors thank the administration of the Porţile de Fier Natural Park for granting permission to recover the guano/clay profile from Gaura cu Muscă Cave. Special thanks to Dr. I. Coroiu for discussing the aspects of bat ecology with the authors. This research was funded by CNCS grant PN-II-ID-PCE 2011-0-0588 to BPO.

References

  1. Bird MI, Boobyer EM, Bryant C, Lewis HA, Paz V, Stephens WE (2007) A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines: Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98:59–69Google Scholar
  2. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440CrossRefGoogle Scholar
  3. Boroneanţ V (2000) The archeology of the Romanian’s caves and mines. cIMeC, Bucharest, p 327 (in Romanian)Google Scholar
  4. Boşcaiu N, Lupşa V (1967a) Palynological studies in Veterani Cave, Danube Gorge. Contribuţii Botanice: 39–46 (in Romanian)Google Scholar
  5. Boşcaiu N, Lupşa V (1967b) Palynological research in the “Grota Haiducilor” Cave near the Herculaneum Spa (Romania). Rev Roum Biol Botanique 12(2–3):137–140Google Scholar
  6. Boşcaiu N, Resmeriţă I (1969) Xerophylous herbaceous vegetation of the Eşelniţa-Mraconiei valleys alluvia in the Danube Gorge. Stud Cerc Biol Seria Bot 21(3):209–216 (in Romanian)Google Scholar
  7. Boşcaiu N, Lupşa V, Boroneanţ V (1971) Sporo-pollen analysis of sediment in Climente Cave (Danube Gorge). St Cerc Biol Ser Bot 23(5):401–403 (in Romanian)Google Scholar
  8. Botoșăneanu L, Negrea A, Negrea Ș (eds) (1967) Recherches sur les grottes du Banat et l’Oltenie, Roumanie (1959-1962). Centre National de la Recherche Scientifique, Paris, p 392Google Scholar
  9. Brand WA, Geilmann H, Crosson ER, Rella CW (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Commun Mass Spectrom 23:1879–1884CrossRefGoogle Scholar
  10. Bui-Thi M, Girard M (2000) Les guanos de chauve-souris d’âge médiéval de la Grande Grotte d’Arcy-sur-Cure (Yonne). Analyse pollinique et implications paléobotaniques. Géologie Alpine Mémoire HS 31:83–95Google Scholar
  11. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner K-U, Wanner H, Luterbacher J, Esper J (2011) 2500 Years of European climate variability and human susceptibility. Science 331:578–582CrossRefGoogle Scholar
  12. Busch KW, Busch MA (1999) Cavity-ringdown spectroscopy: an ultratrace-absorption measurement technique. American Chemical Society, Washington, p 269CrossRefGoogle Scholar
  13. Carbonnel JR, Olive P, Decu VG, Klein D (1999) Datation d’un dépôt de guano holocène dans la Carpates méridionales (Roumanie), Implications tectoniques. CR Acad Sci Paris 328:367–370Google Scholar
  14. Carrión JS, Scott L, Marais E (2006) Environmental implications of pollen spectra in bat droppings from southeastern Spain and potential for palaeoenvironmental reconstructions. Rev Palaeobot Palynol 140:175–186CrossRefGoogle Scholar
  15. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene-Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  16. Coles GM, Gilbertson DD, Hunt CO, Jenkinson RDS (1989) Taphonomy and the palynology of cave deposits. Cave Sci 16:83–89Google Scholar
  17. Constantin S, Onac BP, Fleitmann D, Tamas T (2001) Past vegetation changes in karst areas as revealed by a comparative isotopic study of two Holocene speleothems from Romania. In: Cheng Z, Changhong Y, Fong G (eds) World Correlation of Karst Ecosystems Newsletter. IGCP Project 448, Karst Dynamics Laboratory, Guilin, pp 67–73Google Scholar
  18. Constantin S, Bojar A-V, Lauritzen S-E, Lundberg J (2007) Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave Southern Carpathians, Romania. Palaeogeogr Palaeoclim Palaeoecol 243:322–338CrossRefGoogle Scholar
  19. Decu V, Murariu D, Gheorghiu V (2003) The bats of Romania. Institutul de Speologie “Emil Racoviţă” şi Muzeul de Istorie Naturală “Grigore Antipa”, Bucureşti, p 521 (in Romanian)Google Scholar
  20. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotops in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  21. Des Marais DJ, Mitchell JM, Meinschein WG, Hayes JM (1980) The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the insectivorous bats in the region of Carlsbad, New Mexico. Geochim Cosmochim Acta 44:2075–2086CrossRefGoogle Scholar
  22. Diaconu G, Dumitraş D (2000) Sur la présence de l’ardéalite dans la Grotte de Topolnita (Plateau de Mehedinti, Roumanie). Theor Appl Karstol 13–14:67–73Google Scholar
  23. Dumitrescu M, Tanasacche J, Orgidan T (1962–1963) The distribution of bats in R.P.Română, Lucr Inst Speo “Emil Racoviţă” 1–2:509–576 (in Romanian)Google Scholar
  24. Dykes AP (2007) Mass movements in cave sediments: geotechnical investigation of a 42,000-year old guano mudflow inside Niah Great Cave, Sarawak, Borneo. Landslides 4:279–290CrossRefGoogle Scholar
  25. Feurdean A, Spessa A, Magyari EK, Willis KJ, Veres D, Hickler T (2012) Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat Sci Rev 45:111–125CrossRefGoogle Scholar
  26. Forbes MS, Bestland EA (2006) Guano-derived deposits within the sandy cave fills of Naracoorte, South Australia. Altering. Australas J Palaeontol 30:129–146 (special issue 1)CrossRefGoogle Scholar
  27. Gavin DG (2001) Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43(1):27–44Google Scholar
  28. Geantă A, Tanţău I, Tămaș T, Johnston V (2012) Palaeoenvironmental information from the palynology of an 800 year old bat guano deposit from Măgurici Cave, NW Transylvania (Romania). Rev Palaeobot Palynol 174:57–66CrossRefGoogle Scholar
  29. Gilbertson DD, Bird M, Hunt C, McLaren S, Mani Banda R, Pyatt B, Rose J, Stephens M (2005) Past human activity and geomorphological change in a guano-rich tropical cave mouth: initial interpretations of the Late Quaternary succession in the Great Cave of Niah, Sarawak. Asian Perspect 44(1):16–41CrossRefGoogle Scholar
  30. Harris AH (1979) Reconstruction of mid-Wisconsin environments in southern New Mexico. Natl Geogr Res 3:142–151Google Scholar
  31. Hock RJ (1951) The metabolic rates and body temperatures of bats. Biol Bulletin 101:289–299CrossRefGoogle Scholar
  32. Johnston VE, McDermott F, Tămaș T (2010) A radiocarbon dated bat guano deposit from N.W. Romania: implications for the timing of the Little Ice Age and Medieval Climate Anomaly. Palaeogeogr Palaeoclimatol Palaeoecol 291:217–227CrossRefGoogle Scholar
  33. Kennedy RA, Laetsch WM (1974) Plant Species Intermediate for C3, C4 Photosynthesis. Science 184:1087–1089CrossRefGoogle Scholar
  34. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107:19691–19695CrossRefGoogle Scholar
  35. Kunz TH, Murray SW, Fuller NW (2012) Bats. In: White WB, Culver DC (eds) Encyclopedia of Caves. Academic Press, Oxford, pp 40–54Google Scholar
  36. Leroy SAG, Simms MJ (2006) Iron age to medieval entomogamous vegetation and Rhinolophus hipposideros roost in South-Eastern Wales (UK). Palaeogeogr Palaeoclimatol Palaeoecol 237:4–18CrossRefGoogle Scholar
  37. Maher LJJ (2006) Environmental information from guano palynology of insectivorous bats of the central part of the United States of America. Palaeogeogr Palaeoclimatol Palaeoecol 237:19–31CrossRefGoogle Scholar
  38. Marincea Ș, Dumitraș DG, Diaconu G, Bilal E (2004) Hydroxylapatite, brushite and ardealite in the bat guano deposit from Pestera Mare de la Meresti, Persani Mountains, Romania. N Jb Miner Mh 10:464–488CrossRefGoogle Scholar
  39. Marusek JA (2010) A chronological listing of early weather events. Science & Public Policy Institute, Reprint Series, p 580Google Scholar
  40. Matacă SȘ (2003) Porțile de Fier Natural Park. Flora, vegetation, and nature protection. Unpubl. PhD Thesis, Romanian Academy, Institute of Biology, BucharestGoogle Scholar
  41. McFadgen BG (1982) Dating New Zealand archaeology by radiocarbon. NZ J Sci 25:379–392Google Scholar
  42. McFarlane DA, Lundberg J, Fincham AGA (2002) Late Quaternary paleoecological record from caves of southern Jamaica: West Indies. J Cave Karst Stud 64:117–125Google Scholar
  43. Méhely L (1900) Monographia Chiopterorum Hungariae. Budapest, p 372Google Scholar
  44. Mizutani H, McFarlane DA, Kabaya Y (1992a) Nitrogen and carbon isotope study of a bat guano core from Eagle Creek Cave, Arizona, USA. Mass Spectrosc 40:57–65CrossRefGoogle Scholar
  45. Mizutani H, McFarlane DA, Kabaya Y (1992b) Carbon and nitrogen isotopic signatures of bat guanos as a record of past environments. Mass Spectrosc 40:67–82CrossRefGoogle Scholar
  46. Munteanu R, Bălănescu D (1999) Air and rainfall temperature regime in the space of Banat in the year 1997. Proc Regional Conf of Geography “Danube-Criș-Mureș-Tisa Euroregion-Geoeconomical space of sustainable development”. West University, Timișoara, pp 141–155Google Scholar
  47. Negrea A, Negrea Ș (1979) The caves of the Danube Gorge and their terrestrial fauna. In: Orghidan T, Negrea Ș (eds) Speologia. Academiei RSR, București, pp 30–75 (in Romanian)Google Scholar
  48. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567CrossRefGoogle Scholar
  49. Onac BP, Bengeanu M (1992) Phosphate minerals in few caves from Padurea Craiului Mountains (Romania)—Preliminary note. Nymphaea XXII:23–28Google Scholar
  50. Onac BP, Vereș DȘ (2003) Sequence of secondary phosphate deposition in a karst environment: evidence from Magurici Cave (Romania). Eur J Mineral 15:741–745CrossRefGoogle Scholar
  51. Onac BP, Constantin S, Lundberg J, Lauritzen SE (2002) Isotopic climate record in a Holocene stalagmite from Urșilor Cave (Romania). J Quat Sci 17:319–327CrossRefGoogle Scholar
  52. Onac BP, Zaharia L, Kearns J, Vereș DȘ (2006) Vashegyite from Gaura cu Muscă Cave. Int J Speleol 35(2):67–73CrossRefGoogle Scholar
  53. Osmond CB, Allaway WG, Sutton BG, Troughton JH, Queiroz O, Luttge U, Winter K (1973) Carbon isotope discrimination in photosynthesis of CAM plants. Nature 246:41–42CrossRefGoogle Scholar
  54. Pons A, Quézel P (1958) Premières remarques sur l’étude palynologique d’un guano fossile du Hoggar, Compte Rendus Hebdomadaires des Séances de l’Académie des Sciences 246: 2290–2293Google Scholar
  55. Pop E, Boşcaiu N, Lupşa V (1970) Spoor-pollen analysis of sediments from Cuina Turcului—Dubova. St cerc ist veche 21(1):31–34 (in Romanian)Google Scholar
  56. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  57. Rösch M, Fischer E (2000) A radiocarbon dated Holocene profile from the Banat mountains (Southwestern Carpathians, Romania). Flora 195:277–286Google Scholar
  58. Sandu I, Pescaru VI, Poiană I (eds) (2008) The climate of Romania. Editura Academiei Române, București, p 365 (in Romanian)Google Scholar
  59. Sasowsky ID, Mylroie J (2007) Studies of cave sediments. Physical and chemical records of paleoclimate. Springer, Berlin, p 340CrossRefGoogle Scholar
  60. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384CrossRefGoogle Scholar
  61. Waldbauer GP, Friedman S (1991) Self-selection of optimal diets by insects. Ann Rev Entomol 36:43–63CrossRefGoogle Scholar
  62. Waterbolk HT (1983) Ten guidelines for the archaeological interpretation of radiocarbon dates. In: Mook WG, Waterbolk HT (eds) Proc 1st Int Symp 14C Archaeology, Groningen 1981, PACT8:57–70Google Scholar
  63. White WB (2007) Cave sediments and paleoclimate. J Cave Karst Stud 69:76–93Google Scholar
  64. Wurster CM, McFarlane DA, Bird MI (2007) Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States. Geochim Cosmochim Acta 71:3302–3310CrossRefGoogle Scholar
  65. Wurster CM, Patterson WP, McFarlane DA, Wassenaar LI, Hobson KA, Athfield NB, Bird MI (2008) Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. Geology 36:683–686CrossRefGoogle Scholar
  66. Wurster CM, McFarlane DA, Bird MI, Ascough P, Ashfield NB (2010) Stable isotopes of subfossil bat guano as a long-term environmental archive: insights from a Grand Canyon cave deposit. J Cave Karst Stud 72(2):111–121CrossRefGoogle Scholar
  67. Zahn A, Haselbach H, Güttinger R (2005) Foraging activity of central European Myotis myotis in a landscape dominated by spruce monocultures. Mammalian Biol 70:265–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bogdan P. Onac
    • 1
    • 2
  • Ferenc L. Forray
    • 2
  • Jonathan G. Wynn
    • 1
  • Alexandra M. Giurgiu
    • 2
  1. 1.School of GeosciencesUniversity of South FloridaTampaUSA
  2. 2.Department of GeologyBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations