Skip to main content
Log in

The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Carboniferous black mudrocks with known petroleum potential occur throughout Northern Germany. However, despite numerous boreholes exploring for conventional hydrocarbons, the potential for shale gas resources remains uncertain. Therefore, an integrated investigation was conducted to elucidate the shale gas potential for three different Carboniferous facies incorporating baseline parameters from sedimentological and organic-geochemical analyses. Tournaisian–Namurian fine-grained rocks of the Culm-facies, with Type II + III kerogen were deposited in the basin center. TOC contents of up to 7 % occur in the Lower Alum Shale (3.6 % VRr) and up to 6 % in the Upper Alum Shale (4.4 % VRr). Bands of organic-rich black shales, reflecting sea-level variations controlled by global eustatic cycles, occur within the Tournaisian–Visean “Kohlenkalk”-facies north of the Rhenish Slate Mountains and in the Rügen island area. In both areas the organic matter is characterized by a kerogen Type II + III with TOC contents of up to 7 % and maturities of up to 4.2 and 1.8 % VRr, respectively. Black hemipelagites intercalated with coarser-grained silt- and sandstones occur in the Synorogenic Flysch Formation of the Namurian A along the southern basin margin. TOC contents vary from 0.5 to 2.0 % with Type III kerogen dominated organic matter and maturities of up to 2.5 % VRr. The baseline parameters presented in this paper indicate a shale gas potential for the sediments of the Culm-facies on the southern basin margin and of the “Kohlenkalk”-facies in the Rügen area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amler M, Herbig HG (2006) Ostrand der Kohlenkalk-Plattform und Übergang in das Kulm-Becken im westlichsten Deutschland zwischen Aachen und Wuppertal. In: Amler M, Stoppel D (eds) Stratigraphie von Deutschland, VI–Unterkarbon (Mississippium), vol 41. Deutsche Stratigraphische Kommission, pp 441–447

  • Andruleit H, Bahr A, Bönnemann C, Erbacher J, Franke D, Gerling J, Gestermann N, Himmelsbach T, Kosinowski M, Krug S, Pierau R, Pletsch T, Rogalla U, Schlömer S, NiKo-Projekt-Team (2012) Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe

  • Astini R, Thomas W, Osborne W (2000) Sedimentology of the Conasauga Formation and equivalent units, Appalachian thrust belt in Alabama. In: Osborne W, Thomas W, Astini R (eds) The Conasauga Formation and equivalent units in the Appalachian thrust belt in Alabama. Alabama Geol Soc 31st Ann Field Trip Guidebook, pp 41–71

  • Bachmann G, Hoffmann N (1997) Development of the Rotliegend Basin in Northern Germany. Geolog Jahrb D 103:201–217

    Google Scholar 

  • Baxby M, Patience R, Bartle K (1994) The origin and diagenesis of sedimentary organic nitrogen. J Pet Geol 17:211–230

    Article  Google Scholar 

  • Benek R, Kramer W, McCann T, Scheck M, Negendank J, Korich D, Huebscher HD, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophys 266:379–404

    Article  Google Scholar 

  • Bordenave M (1993) Applied Petroleum Geochemistry. Editions Technip

  • Buchholz P, Obert C, Trapp E, Wachendorf H, Zellmer H (2006) Westharz. In: Amler M, Stoppel D (eds) Stratigraphie von Deutschland, VI-Unterkarbon (Mississippium), Deutsche Stratigraphische Kommission, vol 41, pp 387–413

  • Burgess P, Gayer R (2000) Late Carboniferous tectonic subsidence in South Wales; implications for Variscan basin evolution and tectonic history in SW Britain. Geol Quaterly 157:93–104

    Google Scholar 

  • Cain M (1986) Depositional environments of Upper Cretaceous sandstones of the Lewis Shale, Sand Wash Basin, Colorado. In: Stone D, Johnson K (eds) New interpretations of northwest Colorado geology: Rocky Mountain Association of Geologists, pp 171–181

  • Clausen CD, Leuteritz K (1984) Geologische Karte von Nordrhein-Westfalen 1:25000-Erläuterungen zu Blatt 4516 Warstein. Geologisches Landesamt Nordrhein-Westfalen

  • Curtis J (2002) Fractured shale-gas systems. AAPG Bull 86(11):1921–1938

    Google Scholar 

  • Curtis J, Jarvie D, Ferworn K (2009) Applied geology and geochemistry of gas shales. In: AAPG Conference 2009. Denver Colorado

  • Davies S, Hampson G, Flint S, Elliott T (1999) Continental-scale sequence stratigraphy of the Namurian, Upper Carboniferous and its applications to reservoir prediction. In: Fleet A, Boldy S (eds) Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference, The Geological Society (London), pp 757–770

  • Dreesen R, Bouckaert J, Dusar M, Soille P, Vandenberghe N (1987) Subsurface structural analysis of the late-Dinantian carbonate shelf at the northern flank of the Brabant Massif (Campine Basin, N-Belgium). Mém Expl Cartes Géol Min Belgi 21:1–37

    Google Scholar 

  • Drozdzewski G (2005) Zur sedimentären Entwicklung des Subvariscikums im Namurium und Westfalium Nordwestdeutschlands. In: Wrede V (ed) Stratigraphie von Deutschland, V-Oberkarbon (Pennsylvanian), Deutsche Stratigraphische Kommission, vol 254, pp 151–203

  • Drozdzewski G, Henscheid S, Hoth P, Juch D, Littke R, Vieth V, Wrede A (2009) The pre-Permian of NW-Germany structure and coalification map. Z Dtsch Ges Geowiss 160:159–172

    Google Scholar 

  • EIA (2011) Annual Energy Outlook 2011. US Energy Information Administration

  • Franke D, Hoffmann N, Lindert W (1995) The Variscan deformation front in East Germany. 1. Geological and geophysical constraints. Z Angew Geol 41(2):83–91

    Google Scholar 

  • Friberg L, Poelchau H, Krooss B, Littke R (2000) 3D-modelling of thermal history and simulation of methane and nitrogen migration along the Northeast German seismic DEKORP profile 9601. J Geochem Explor 69–70:263–267

    Article  Google Scholar 

  • Gautier DL, Dolton GL, Takahashi KI, Varnes KL (eds) (1995) 1995 National assessment of United States oil and gas resources—results, methodology, and supporting data. U.S. Geological Survey Digital Data Series DDS-30, 1 CD-ROM

  • Gerling P, Geluk MC, Kockel F, Lokhorst A, Lott GK, Nicholson RA (1999a) ’NW European Gas Atlas’—new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. Geol Soc Lond Pet Geol Conf Ser 5:799–808

    Google Scholar 

  • Gerling P, Kockel F, Krull P (1999b) DGMK-Forschungsbericht 433: Das Kohlenwasserstoff-Potential des Präwestfals im norddeutschen Becken—Eine Synthese. Bundesanstalt für Geowissenschaften und Rohstoffe

  • German Stratigraphic Commision (eds) (2002) Stratigraphische Tabelle von Deutschland 2002

  • Gordalla B, Ewers U, Frimmel FH (2013) Hydraulic fracturing—a toxicological threat for groundwater and drinking water? Environ Earth Sci. doi:10.1007/s12665-013-2672-9

  • Gursky HJ (2006) Paläogeographie, Paläoozeanographie und Fazies. In: Amler M, Stoppel D (eds) Stratigraphie von Deutschland, VI-Unterkarbon (Mississippium), Deutsche Stratigraphische Kommission, vol 41, pp 51–68

  • Hackley PC (2012) Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas: a future shale gas resource? AAPG Bull 96:1449–1482

    Article  Google Scholar 

  • Hansen D, Nielsen S (2003) Why rifts invert in compression. Tectonophys 373:5–24

    Article  Google Scholar 

  • Haq B, Schutter S (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68

    Article  Google Scholar 

  • Hartmann (1974) Ergebnisbericht der Forschungsbohrung E Peckensen 7/70. VEB Erdöl-Erdgas Grimmen

  • Hartwig A, Könitzer S, Boucsein B, Horsfield B, Schulz H-M (2010) Applying classical shale gas evaluation concepts to Germany—Part II: Carboniferous in Northeast Germany. Chem Erde Geochem 70(S3):93–106. doi:10.1016/j.chemer.2010.05.013

    Article  Google Scholar 

  • Hettinger R, Roberts L (2005) Lewis Total Petroleum System of the Southwestern Wyoming Province, Wyoming, Colorado, and Utah. In: USGS Southwestern Wyoming Province Assessment Team (ed) Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah, U.S. Geological Survey Digital Data Series DDS–69–D, p 43

  • Hoffmann N, Jödicke H, Gerling P (2001) The distribution of Pre-Westphalian source rocks in the North German Basin—evidence from magnetotelluric and geochemical data. Geol Mijnb 80:71–84

    Google Scholar 

  • Hoffmann N, Jödicke H, Horejschi L (2005) Regional distribution of the lower carboniferous culm and Carboniferous limestone facies in the North German Basin—derived from magnetotelluric soundings. Z Dtsch Ges Geowiss 2:323–340

    Google Scholar 

  • Hoffmann N, Lindert W, Weyer D (2006) Südwestrand der Osteuropäischen Plattform (Inseln Rügen, Hiddensee, Usedom; Mecklenburg-Vorpommern). In: Amler M, Stoppel D (eds) Stratigraphie von Deutschland, VI-Unterkarbon (Mississippium), Deutsche Stratigraphische Kommission, vol 41, pp 480–493

  • Horsfield B (1989) Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim Cosmochim Acta 53:891–901

    Article  Google Scholar 

  • Hoth P (1997) Fazies und Diagenese von Präperm-Sedimenten der Geotraverse Harz-Rügen. Schrift Geowiss 4:139

    Google Scholar 

  • Hoth P, Lindert W, Hoth K, Weyer D (2005) Das Oberkarbon des zentralen Bereiches der Mitteleuropäischen Senke in Norddeutschland (Südwest-Mecklenburg, Nordwest-Brandenburg, Altmark). In: Wrede V (ed) Stratigraphie von Deutschland, V-Oberkarbon (Pennsylvanian), Deutsche Stratigraphische Kommission, vol 254, pp 335–354

  • Hull D, Loucks RG (2010) Depositional systems and stratal architecture of the Lower Cretaceous (Aptian) Pearsall Formation in south Texas. Gulf Coast Assoc Geol Soc Trans 60:901–906

    Google Scholar 

  • Jarvie D, Hill R, Ruble T, Pollastro R (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91:475–499

    Article  Google Scholar 

  • Jenkins C, Boyer C Jr (2008) Coalbed- and Shale-Gas Reservoirs. J Pet Technol Disting Author Ser 60:92–99

    Article  Google Scholar 

  • Jordan H, Koch J (1975) Inkohlungsuntersuchungen im Unterkarbon des Nordwestharzes. Geol Jahrb A 29:33–43

    Google Scholar 

  • Jurisch A, Krooss BM, Heim S, Littke R (2009) Nitrogen from Carboniferous Shales of the North German Basin: geochemical, Isotopic and Mineralogical Investigations on the Schwalmtal 1001 Well. In: DGMK/ÖGEW-Frühjahrstagung 2009, Fachbereich Aufsuchung und Gewinnung, Celle, 27./28. April 2009. DGMK Tagungsbericht 2009–1:387–396

    Google Scholar 

  • Kombrink H, Leever K, van Wees JD, van Bergen F, David P, Wong T (2008) Late Carboniferous foreland basin formation and Early Carboniferous stretching in Northwestern Europe: inferences from quantitative subsidence analyses in the Netherlands. Basin Res 20:337–395

    Article  Google Scholar 

  • Kombrink H, Besly B, Collinson J, den Hartog Jager D, Drozdzewski G, Dusar M, Hoth P, Pagnier H, Stemmerik L, Waksmundzka M, Wrede V (2010) Carboniferous. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp 81–99

    Google Scholar 

  • Kornpihl K (2005) Tectono-sedimentary Evolution of the NE German Variscan Foreland Basin. PhD thesis, University of Bonn

  • Krooss B, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E (1995) Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chem Geol 126:291–318

    Article  Google Scholar 

  • Law B (2000) Basin-centered gas systems. AAPG Bull 86:1891–1919

    Google Scholar 

  • Law B (2012) Gigantic, gaseous mushwads in Cambrian shale: conasauga Formation, southern Appalachians, USA. Int J Coal Geol 103:70–91

    Article  Google Scholar 

  • Littke R, Krooss B, Uffmann A, Schulz HM, Horsfied B (2011) Unconventional Gas Resources in the Paleozoic of Central Europe. Oil Gas Sci Technol Rev 66:953–977

    Article  Google Scholar 

  • Loucks RG (1977) Porosity development and distribution in shoal-water carbonate complexes: Subsurface Pearsall Formation (Lower Cretaceous), south Texas. In: Bebout DG, Loucks RG (eds) Cretaceous carbonates of Texas and Mexico: Applications to subsurface exploration: University of Texas at Austin, Bureau of Economic Geology Report of Investigations 89, pp 97–126

  • Loucks RG (2002) Controls on reservoir quality in platform-interior limestones around the Gulf of Mexico: examples from the Lower Cretaceous Pearsall Formation in south Texas. Gulf Coast Assoc Geol Soc Trans 52:659–672

    Google Scholar 

  • Loucks RG, Ruppel S (2007) Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin. Texas. AAPG Bull 91:579–601

    Article  Google Scholar 

  • Mapel W, Johnson R, Bachman G, Varnes K (1979) Southern midcontinent and southern Rocky Mountain region. In: Craig L, Connor C (eds) Paleotectonic investigations of the Mississippian system in the United States: Part I. Introduction and regional analyses of the Mississippian system. U.S. Geological Survey Professional Paper 1010-J, pp 161–187

  • Maynard JR, Hofmann W, Dunay R, Bentham P, Dean K, Watson I (1997) The Carboniferous of western Europe: the development of a petroleum system. Pet Geosci 3:97–115

    Article  Google Scholar 

  • McCann TE (1999) The tectonosedimentary evolution of the northern margin of the Carboniferous foreland basin of NE Germany. Tectonophysics 313:119–144

    Article  Google Scholar 

  • McCann TE (2008) The geology of central Europe volume 1: Precambrian and Palaeozoic. The Geological Society, London

    Google Scholar 

  • Mingram B, Hoth P, Harlov D (2003) Nitrogen potential of Namurian shales in the North German Basin. J Geochem Explor 78–79:405–408

    Article  Google Scholar 

  • Mingram B, Hoth P, Lüders V, Harlov D (2005) The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. Int J Earth Sci 94:1010–1022

    Article  Google Scholar 

  • Montgomery S, Jarvie D, Bowker K, Pollastro R (2005) Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bull 89:155–175

    Article  Google Scholar 

  • Narkiewicz M (2007) Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geol Quaterly 51:231–265

    Google Scholar 

  • Neumann ER, Wilson M, Herremans M, Spencer E, Obst K, Timmermann M, Kirstein L (2004) Carboniferous–Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. In: Wilson M, Neumann ER, Davies G, Timmermann M, Herremans M, Larsen B (eds) Permo-Carboniferous Magmatism and Rifting in Europe, Geological Society London Special Publications, vol 223, pp 11–40

  • NIGOGA (2000) NIGOGA-The Norwegian Industry Guide to Organic Geochemical Analyses, 4th ed. Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research, and the Norwegian Petroleum Directorate. http://www.npd.no/engelsk/nigoga/default.htm

  • Oncken O, von Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin the late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tecton 18:75–91

    Article  Google Scholar 

  • Oncken O, Plesch A, Weber J, Ricken W, Schrader S (2000) Passive margin detachment during arc-continent collision (Central European Variscides). In: Franke W, Haak V, Oncken O (eds) Orogenic processes: quantification and modelling in the variscan belt. Geological Society. London Special Publications, London, pp 199–216

    Google Scholar 

  • Pashin J (2008) Gas shale potential of Alabama. In: Univ Alabama, 2008 Int Coalbed Shale Gas Symposium Proc, Paper 0808, p 13

  • Peters K (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70(3):318–329

    Google Scholar 

  • Pharaoh T, Dusar M, Geluk M, Kockel F, Krawczyk C, Krzywiec P, Scheck-Wenderoth M, Thybo H, Vejbæk O, van Wees J (2010) Tectonic evolution. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp 25–57

    Google Scholar 

  • Pollastro R, Jarvie D, Hill R, Adams C (2007) Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas. AAPG Bull 91:405–436

    Article  Google Scholar 

  • Pyles D, Slatt R (2000) A high-frequency sequence stratigraphic framework for shallow through deep-water deposits of the Lewis Shale and Fox Hills Sandstone, Great Divide and Washakie Basins, Wyoming. In: Weimer P et al (eds) Deep-water reservoirs of the world, Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation, 20th annual Bob F. Perkins Research Conference, December 3–6, 2000, Houston, pp 836–861

  • Ricken W, Schrader S, Oncken O, Plesch A (2000) Turbidite basin and mass dynamics related to orogenic wedge growth; the Rheno-Hercynian case. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: Quantification and modelling in the Variscan Belt of central Europe, Geological Society, London, Special Publications, vol 179, pp 257–280

  • Riedl J, Rotter S, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci. doi:10.1007/s12665-013-2320-4

  • Rygel M, Fielding C, Frank T, Birgenheier L (2008) The magnitude of late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res 78:500–511

    Article  Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophys 313:145–169

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003) Salt movements in the Northeast German Basin and its relation to major post-Permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophys 361:277–299

    Article  Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophys 397:143–165

    Article  Google Scholar 

  • Schroeder L, Loesch J, Schoneich H, Stancu K, Tafel W (1991) Oil and gas in the North-West German Basin. In: Spencer A (ed) Generation, Accumulation and Production of Europe’s Hydrocarbons, European Association of Petroleum Geoscientists Special Publication, vol 1, pp 139–148

  • Schwahn D (1972) Ergebnisbericht über die komplexe Auswertung der Bohrung Sagard 1/70 Teil I. VEB Erdöl und Erdgas Grimmen

  • Siegmund H, Trappe J, Oschmann W (2002) Sequence stratigraphic and genetic aspects of the Tournaisian “Liegende Alaunschiefer” and adjacent beds. Int J Earth Sci 91:934–949

    Article  Google Scholar 

  • Singh P, Slatt R, Coffey B (2008) Barnett Shale—unfolded: sedimentology, sequence stratigraphy, and regional mapping. Gulf Coast Assoc Geol Soc Trans 58:777–795

    Google Scholar 

  • Singh P, Slatt R, Borges G, Perez R, Portas R, Marfurt K, Ammerman M, Coffey B (2009) Reservoir characterization of unconventional gas shale reservoirs: example from the Barnett Shale, Texas, USA. Okla City Geol Soc Shale Shak 60:15–31

    Google Scholar 

  • Stoppel D, Korn D, Amler M (2006) Der Nord- und Nordostrand des Rheinischen Schiefergebirges und das zentrale Sauerland. In: Amler M, Stoppel D (eds) Stratigraphie von Deutschland, VI – Unterkarbon (Mississippium), Deutsche Stratigraphische Kommission, vol 41, pp 330–357

  • Striegler R (1970) Abschlußbericht über die Ergebnisse der Komplexbearbeitung der Forschungsbohrung E Oranienburg 1/68. VEB Erdöl und Erdgas Mittenwalde

  • Taylor G, Teichmüller M, Davis A, Diessel C, Littke R, Robert P (1998) Organic Petrology. Gebrüder Borntraeger, Berlin/Stuttgart

    Google Scholar 

  • Timmermann M (2004) Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. In: Wilson M, Neumann ER, Davies G, Timmermann M, Herremans M, Larsen B (eds) Permo-Carboniferous Magmatism and Rifting in Europe, Geological Society, London, Special Publications, vol 223, pp 41–74

  • Uffmann A, Littke R, Rippen D (2012) Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian Black Shales at the Northern Margin of the Variscan Mountain Belt (Germany and Belgium). Int J Coal Geol 103:92–108

    Article  Google Scholar 

  • van de Meent D, Brown S, Philp R, Simoneit B (1980) Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors. Geochim Cosmochim Acta 44:999–1013

    Article  Google Scholar 

  • Van Horn M, Shannon L (1989) Hay Reservoir Field—A submarine fan gas reservoir within the Lewis Shale, Sweetwater County, Wyoming. In: Eisert J (ed) Gas resources of Wyoming: Wyoming Geological Association Fortieth Field Conference Guidebook, pp 155–180

  • van Wees J, Beekman F (2000) Lithosphere rheology during intraplate basin extension and inversion: inferences from automated modeling of four basins in western Europe. Tectonophys 320:219–242

    Article  Google Scholar 

  • Warr L (2000) The Variscan Orogeny: the welding of Pangaea. In: Woodcock N, Strachan R (eds) Geological History of Britain and Ireland. Blackwell, Oxford, pp 271–294

    Google Scholar 

  • Wolfburg J (1963) Das Unterkarbon- und Devonprofil der Bohrung Münsterland 1. Fortschr Geol Rheinl Westfal 11:517–538

    Google Scholar 

  • Wrede V, Ribbert K (2005) Das Oberkarbon (Silesium) am Nordrand des rechtsrheinischen Schiefergebirges (Ruhrkarbon). In: Wrede V (ed) Stratigraphie von Deutschland, V-Oberkarbon (Pennsylvanian), Deutsche Stratigraphische Kommission, vol 254, pp 225–254

  • Ziegler P (1990) Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij B.V., Geological Society Publishing House (Bath)

  • Ziegler A, Scotese C, McKerrow W, Johnson M, Bambach R (1979) Paleozoic paleogeography. Annu Rev Earth Planet Sci 473:473–502

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted in the GeoEn-Project (www.geoen.de) funded by the German Federal Ministry of Education and Research (BMBF) under Grant 03G0671A/B/C. Gratitude is expressed to the German Federal Geological Surveys of Brandenburg (LBGR), Mecklenburg-Vorpommern (LUNG), Sachsen-Anhalt (LABG), and Nordrhein-Westfalen (GD-NRW) as well as TNO for the provision of sample material. Special acknowledgements are stretched to Henk Kombrink and all reviewers, who helped improving this manuscript with their elaborate and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit I. Kerschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerschke, D.I., Schulz, HM. The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context. Environ Earth Sci 70, 3817–3837 (2013). https://doi.org/10.1007/s12665-013-2745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2745-9

Keywords

Navigation