Environmental Earth Sciences

, Volume 71, Issue 4, pp 1791–1807

Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response

  • Mariachiara Caschetto
  • Maurizio Barbieri
  • Diana M. P. Galassi
  • Lucia Mastrorillo
  • Sergio Rusi
  • Fabio Stoch
  • Alessia Di Cioccio
  • Marco Petitta
Original Article


Many rivers worldwide are undergoing severe man-induced alterations which are reflected also in changes of the degree of connectivity between surface waters and groundwater. Pollution, irrigation withdrawal, alteration of freshwater flows, road construction, surface water diversion, soil erosion in agriculture, deforestation and dam building have led to some irreversible species losses and severe changes in community composition of freshwater ecosystems. Taking into account the impact of damming and flow diversion on natural river discharge, the present study is aimed at (i) evaluating the effects of anthropogenic changes on groundwater/surface water interactions; (ii) analyzing the fate of nitrogenous pollutants at the floodplain scale; and (iii) describing the overall response of invertebrate assemblages to such changes. Hydrogeological, geochemical and isotopic data revealed short- and long-term changes in hydrology, allowing the assessment of the hydrogeological setting and the evaluation of potential contamination by nitrogen compounds. Water isotopes allowed distinguishing a shallow aquifer locally fed by zenithal recharge and river losses, and a deeper aquifer/aquitard system fed by surrounding carbonate aquifers. This system was found to retain ammonium and, through the shallow aquifer, release it in surface running waters via the hyporheic zone of the riverbed. All these factors influence river ecosystem health. As many environmental drivers entered in action offering a multiple-component artificial environment, a clear relationship between river flow alteration and benthic and hyporheic invertebrate diversity was not found, being species response driven by the combination of three main stressors: ammonium pollution, man-induced changes in river morphology and altered discharge regime.


River Nitrogen cycle Stable isotope Surface/groundwater interaction GDE Italy 


  1. Banks EW, Simmons CT, Love AJ, Shand P (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49CrossRefGoogle Scholar
  2. Barbieri M, D’Amelio L, Desiderio G, Rusi S, Marchetti A, Nanni T, Petitta M, Rusi S, Tallini M (2003) Gli isotopi ambientali (18O, 2H and 87/86Sr) nelle acque sorgive dell’Appennino Abruzzese: considerazioni sui circuiti sotterranei negli acquiferi carbonatici. Atti I Congresso Nazionale AIGA, Chieti, 19–20 Feb 2003, pp 69–81Google Scholar
  3. Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotopes (2H, 18O and 87/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20(11):2063–2081Google Scholar
  4. Boni C, Bono P, Capelli G (1986) Schema Idrogeologico dell’Italia Centrale. Mem Soc Geol It 36:991–1012Google Scholar
  5. Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. C R Acad Sci 265:369–370Google Scholar
  6. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29:59–81CrossRefGoogle Scholar
  7. Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849CrossRefGoogle Scholar
  8. Celico P (1978) Schema idrogeologico dell’Appennino carbonatico centro-meridionale. Memorie e Note dell’Istituto di Geologia Applicata, Università di Napoli 14:5–97Google Scholar
  9. Cey EE, Rudolph DL, Aravena R, Parking G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67CrossRefGoogle Scholar
  10. Conese M, Nanni T, Peila C, Rusi S, Salvati R (2001) Idrogeologia della Montagna del Morrone (Appennino abruzzese): dati preliminari. Mem Soc Geol It 56:181–196Google Scholar
  11. Dehedin A, Maazouzi C, Puijalon S, Marmonier P, Piscart C (2013) The combined effects of water level reduction and an increase in ammonia concentration on organic matter processing by key freshwater shredders in alluvial wetlands. Global Change Biol 19:763–774Google Scholar
  12. Desiderio G, Rusi S, Nanni T (2003) Idrogeologia e qualità delle acque degli acquiferi della conca intramontana di Sulmona (Abruzzo) Atti del 1° Convegno Nazionale dell’AIGA, 19–20 Feb 3003, Chieti, pp 315–342Google Scholar
  13. Desiderio G, Ferracuti L, Rusi S, Tatangelo F (2005a) Il contributo degli isotopi naturali 18O e 2H nello studio delle idrostrutture carbonatiche abruzzesi e delle acque mineralizzate nell’area abruzzese e molisana. Giornale di Geologia Applicata 2:453–458Google Scholar
  14. Desiderio G, Nanni T, Rusi S (2005b) Hydrogeology, aquifer vulnerability and potential hazard of the Sulmona plain (Central Apennine, Italy) Fourth Congress on the Protection and Management of Groundwater, Colorno, 21–23 Sept 2005, GEA Torino, pp 1–7Google Scholar
  15. Desiderio G, Rusi S, Tatangelo F (2010) Caratterizzazione idrogeochimica delle acque sotterranee abruzzesi e relative anomalie. Ital J Geosci 129(2):207–222Google Scholar
  16. Desiderio G, Folchi Vici D’Arcevia C, Nanni T, Rusi S (2012) Hydrogeological mapping of the highly anthropogenically influenced Peligna Valley intramontane basin (Central Italy). J Maps 8(2):165–168CrossRefGoogle Scholar
  17. Di Lorenzo T, Galassi DMP (2013) Agricultural impact in Mediterranean alluvial aquifers: do groundwater communities respond? Fundam Appl Limnol 182:271–282Google Scholar
  18. Di Lorenzo T, Brilli M, Del Tosto D, Galassi DMP, Petitta M (2012) Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (Central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environ Earth Sci 67:2383–2398CrossRefGoogle Scholar
  19. Di Lorenzo T, Stoch F, Galassi DMP (2013) Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica. doi:10.1016/j.limno.2012.12.003 Google Scholar
  20. Di Marzio WD, Castaldo D, Pantani C, Di Cioccio A, Di Lorenzo T, Sàenz ME, Galassi DMP (2009) Relative sensitivity of hyporheic copepods to chemicals. Bull Environ Contam Toxicol 82:488–491CrossRefGoogle Scholar
  21. Dole-Olivier M-J (2011) The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Mar Freshw Res 62(11):1281–1302CrossRefGoogle Scholar
  22. Eamus D, Froend R (2006) Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust J Bot 54:91–96CrossRefGoogle Scholar
  23. European Commission (EC) (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun L 327:1–72Google Scholar
  24. European Commission (EC) (2012) Communication from the commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. A blueprint to Safeguard Europe’s Water Resources. BrusselsGoogle Scholar
  25. Galassi DMP (2001) Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453(454):227–253CrossRefGoogle Scholar
  26. Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–708CrossRefGoogle Scholar
  27. Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755CrossRefGoogle Scholar
  28. Keskin TE (2010) Nitrate and heavy metal pollution resulting from agricultural activity: a case study from Eskipazar (Karabuk, Turkey). Environ Earth Sci 61(4):703–721CrossRefGoogle Scholar
  29. Landers DH, Simonich SL, Jaffe DA, Geiser LH, Campbell DH, Schwindt AR, Schreck CB, Kent ML, Hafner WD, Taylor HE, Hageman KJ, Usenko S, Ackerman LK, Schrlau JE, Rose NL, Blett TF, Erway MM (2008) The fate, transport, and ecological impacts of airborne contaminants in Western National Parks (USA). EPA/600/R-07/138. US Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, Corvallis, OregonGoogle Scholar
  30. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy; a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  31. Malard F, Dole-Olivier M-J, Mathieu J, Stoch F (2002) Sampling Manual for the Assessment of Regional Groundwater Biodiversity. http://www.pascalis-project.com. Accessed on 17 Oct 2008
  32. Margalef R (1958) Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzati-Traverso (ed) Perspectives in marine biology. University of California Press, Berkeley, pp 323–347Google Scholar
  33. May R, Jinno K, Tsutsumi A (2011) Influence of flooding on groundwater flow in central Cambodia. Environ Earth Sci 63(1):151–161CrossRefGoogle Scholar
  34. Miccadei E, Barberi R, Cavinato G (1998) La geologia della Conca di Sulmona (Abruzzo, Italia Centrale). Geol Romana 34:59–86Google Scholar
  35. Petitta M, Fracchiolla D, Aravena R, Barbieri M (2009) Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, central Italy. J Hydrol 372:124–135CrossRefGoogle Scholar
  36. Petitta M, Scarascia Mugnozza G, Barbieri M, Bianchi Fasani G, Esposito C (2010) Hydrodynamic and isotopic investigations for evaluating the mechanisms and amount of groundwater seepage through a rockslide dam. Hydrol Process 24(24):3510–3520CrossRefGoogle Scholar
  37. Poff NL, Richter BD, Arthington AH, Bunn SE, Naiman RJ, Kendy E, Acreman M, Apse C, Bledsoe BP, Freeman MC, Henriksen J, Jacobson RB, Kennen JG, Merritt DM, O’keeffe JH, Olden JD, Rogers K, Tharme RE, Warner A (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55(1):147–170CrossRefGoogle Scholar
  38. Rao NS, Subrahmanyam A, Kumar SR, Srinivasulu N, Rao GB, Rao PS, Reddy GV (2012) Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environ Earth Sci 67(5):1451–1471CrossRefGoogle Scholar
  39. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr Ser 78:1–36CrossRefGoogle Scholar
  40. Salem SBH, Chkir N, Zouari K, Cognard-Plancq AL, Valles V, Marc V (2012) Natural and artificial recharge investigation in the Zeroud Basin, Central Tunisia: impact of Sidi Saad Dam storage. Environ Earth Sci 66(4):1099–1110CrossRefGoogle Scholar
  41. Skrzypek G (2013) Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 405:2815–2823CrossRefGoogle Scholar
  42. Stanford JA, Ward JV (1992) Management of aquatic resources in large catchments: recognizing interactions between ecosystem connectivity and environmental disturbance. In: Naiman RJ (ed) Watershed management. Springer, New York, pp 91–124CrossRefGoogle Scholar
  43. Stanford JA, Ward JV (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J N Am Benthol Soc 12:48–60CrossRefGoogle Scholar
  44. Tomlinson M, Boulton AJ (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia: a review. Mar Freshw Res 61:936–949CrossRefGoogle Scholar
  45. Wexler SK, Hiscock KM, Dennis PF (2011) Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach. Environ Sci Technol 45:3963–3973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mariachiara Caschetto
    • 1
  • Maurizio Barbieri
    • 1
  • Diana M. P. Galassi
    • 2
  • Lucia Mastrorillo
    • 1
  • Sergio Rusi
    • 3
  • Fabio Stoch
    • 2
  • Alessia Di Cioccio
    • 2
  • Marco Petitta
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento della Vita, della Salute e delle Scienze AmbientaliUniversità de L’Aquila, Via VetoioL’AquilaItaly
  3. 3.Dipartimento di Ingegneria e Geologia (INGEO) Sezione di GeologiaUniversità G. d’AnnunzioChietiItaly

Personalised recommendations