Advertisement

Environmental Earth Sciences

, Volume 70, Issue 6, pp 2883–2893 | Cite as

Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert

  • Yanfang Qin
  • Xi Chen
  • Kefa Zhou
  • Patrick Klenk
  • Kurt Roth
  • Li Sun
Original Article

Abstract

In the Gurbantünggüt Desert, snowmelt-induced high soil water contents briefly create favorable conditions for the germination and growth of plants every spring. Monitoring the rapidly changing conditions in this time period demands fast and efficient methods for measuring soil water contents at the field scale. For this study, a series of ground-penetrating radar (GPR) measurements were carried out on sites characterized by semi-vegetated dunes both in April 2010 and 2011. We compare water contents calculated from the GPR direct ground wave signal to both point scale validation measurements by time-domain reflectometry (TDR) and gravimetric sampling. Our results show that GPR is an effective method to rapidly obtain a detailed image of the field scale soil water content distribution in the Gurbantünggüt Desert with an accuracy similar to TDR. Observed large scale soil water content variations are dominated by dune topography: During snow melting, melt water was found to trickle slowly from the dune ridges to interdune valleys, increasing the soil water content there while the dune ridges quickly started to dry down. In dune valleys, smaller scale near-surface soil water content changes were dominated by variations in the vegetation coverage, leading to snowmelt funnels at distinct locations: The snowmelt initially occurred around the stems and branches of plants, forming funnel-shaped melt water induced holes through the snow cover and leading to an increasing amount of melt water collected around these plant roots. Our comparison of data from 2010 to 2011 furthermore suggests a temporally stable distribution of near-surface soil water content. This has important ecological significance for controlling desertification and for restoring and reconstructing vegetation in the Gurbantünggüt Desert.

Keywords

Ground-penetrating radar GPR Direct ground wave Hydrogeophysics Near-surface soil water content Snowmelt Gurbantünggüt Desert Gurbantunggut Desert Arid zone research 

Notes

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 41101429 and 41271437) and Technological Supporting Project of Xinjiang Uygur Autonomous Region (Grant No. 201216147). We thank all the helping hands during data taking and evaluation, especially the technical support by the Institute of Environmental Physics, Heidelberg University. Funding provided by the German Federal Ministry for Science and Education through the “BMBF future megacities” program project “RECAST Urumqi” is gratefully acknowledged.

References

  1. Berndtsson R, Nodomi K, Yasuda H, Persson T, Chen HS, Jinno K (1996) Soil water and temperature patterns in an Arid desert dune sand. J Hydrol 185:221–240. doi: 10.1016/0022-1694(95)02987-7 CrossRefGoogle Scholar
  2. Bogena HR, Huisman JA, Oberdörster C, Vereecken H (2007) Evaluation of a low-cost soil water content sensor for wireless network applications. J Hydrol 344:32–42. doi: 10.1016/j.jhydrol.2007.06.032 CrossRefGoogle Scholar
  3. Chen X, Zhang ZC, Chen XH, Shi P (2009) The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ Earth Sci 59:811–820. doi: 10.1007/s12665-009-0077-6 CrossRefGoogle Scholar
  4. D’ Urso G, Minacapilli M (2006) A semi-empirical approach for surface soil water content estimation from radar data without a priori information on surface roughness. J Hydrol 321:297–310. doi: 10.1016/j.jhydrol.2005.08.013 CrossRefGoogle Scholar
  5. Famiglietti JS, Devereaux JA, Laymon CA, Tsegaye T, Houser PR, Jackson TJ, Graham ST, Rodell M, van Oevelen PJ (1999) Ground based investigation of soil moisture variability within remote sensing footprints during the Southern great plains 1997 (SGP97) hydrology experiment. Water Resour Res 35:1839–1851. doi: 10.1029/1999WR900047 CrossRefGoogle Scholar
  6. Galagedara LW, Parkin GW, Redman JD (2003) An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrol Process 17:3615–3628. doi: 10.1002/hyp.1351 CrossRefGoogle Scholar
  7. Galagedara LW, Parkin GW, Redman JD, von Bertoldi P, Endres AL (2005) Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. J Hydrol 301:182–197. doi: 10.1016/j.jhydrol.2004.06.031 CrossRefGoogle Scholar
  8. Gerhards H, Wollschläger U, Yu QH, Schiwek P, Pan XC, Roth K (2008) Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 73(4):J15–J23. doi: 10.1190/1.2943669 CrossRefGoogle Scholar
  9. Greco R (2006) Soil water content inverse profiling from single TDR waveforms. J Hydrol 317:325–339. doi: 10.1016/j.jhydrol.2005.05.024 CrossRefGoogle Scholar
  10. Huisman JA, Hubbard SS, Redman JD, Annan AP (2003a) Measuring soil water content with ground penetrating radar: a review. Vadose Zone J 2:476–491. doi: 10.2113/2.4.476 Google Scholar
  11. Huisman JA, Snepvangers JJ, Bouten W, Heuvelink GB (2003b) Monitoring temporal development of spatial soil water content variation: comparison of ground penetrating radar and time domain reflectometry. Vadose Zone J 2:519–529. doi: 10.2136/vzj2003.5190 Google Scholar
  12. Klenk P, Buchner JS, Roth K, Wollschläger U, Qin YF (2011) On the reliability of current GPR ground wave methods for determining near-surface water contents. 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). pp 1–5. doi: 10.1109/IWAGPR.2011.5963881
  13. Klenk P, Roth K, Qin YF, Zhou KF (2012) Exploring spatial patterns of soil water content in the Urumqi region with Ground-Penetrating Radar. 2012 14th International Conference on Ground Penetrating Radar (ICGPR). pp 713–717. doi: 10.1109/ICGPR.2012.6254954
  14. Klysz G, Balayssac JP (2007) Determination of volumetric water content of concrete using ground-penetrating radar. Cem Concr Res 37:1164–1171. doi: 10.1016/j.cemconres.2007.04.010 CrossRefGoogle Scholar
  15. Li JF (1991) Climate of Xinjiang (in Chinese). China Meteorological Press, BeijingGoogle Scholar
  16. Li XR, Ma FY, Xiao HL, Wang XP, Kim KC (2004) Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J Arid Environ 57:1–16. doi: 10.1016/S0140-1963(03)00089-2 CrossRefGoogle Scholar
  17. Li J, Zhao CY, Zhu H, Wang F, Wang LJ, Kou SY (2007) Multi-scale heterogeneity of soil moisture following snow thawing in Haloxylon ammodendron shrubland. Sci China Ser D Earth Sci 50:49–55. doi: 10.1007/s11430-007-5019-0 CrossRefGoogle Scholar
  18. Ma QL, Wang JH, Li XR, Zhu SJ, Liu HJ, Zhan KJ (2009) Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management. Environ Earth Sci 59:765–774. doi: 10.1007/s12665-009-0072-y CrossRefGoogle Scholar
  19. Nash MS, Wierenga PJ, Gutjahr A (1991) Time-series analysis of soil-moisture and rainfall along a line transect in arid rangeland. Soil Sci 152:189–198. doi: 10.1097/00010694-199109000-00005 CrossRefGoogle Scholar
  20. Qian YB, Wu ZN, Yang Q, Zhang LY, Wang XY (2007a) Ground-surface conditions of sand-dust event occurrences in the southern Junggar Basin of Xinjiang, China. J Arid Environ 70:49–62. doi: 10.1016/j.jaridenv.2006.12.001 CrossRefGoogle Scholar
  21. Qian YB, Wu ZN, Zhang LY, Zhao RF, Wang XY, Li YM (2007b) The spatial distribution characteristics of ephemeral plants in the Gurbantünggüt Desert. Chin Sci Bull 52(19):2299–2306Google Scholar
  22. Robinson DA, Jonesb SB, Wraithc JM, Ord D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2:444–475. doi: 10.2113/2.4.444 Google Scholar
  23. Robinson DA, Campbell CS, Hopman JW, Hornbuckle BK, Jones SB, Knight R, Ogden F, Selker J, Wendroth O (2008) Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone J 7:358–389. doi: 10.2136/vzj2007.0143 CrossRefGoogle Scholar
  24. Roth K, Schulin R, Fluhler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res 26:2267–2273. doi: 10.1029/90WR01238 Google Scholar
  25. Shi XK, Wen J, Wang L, Zhang TT, Tian H, Wang X, Liu R, Zhang JH (2010) Regional soil moisture retrievals and simulations from assimilation of satellite microwave brightness temperature observations. Environ Earth Sci 61:1105–1111. doi: 10.1007/s12665-009-0428-3 CrossRefGoogle Scholar
  26. Slob E, Sato M, Olhoeft G (2010) Surface and borehole ground-penetrating-radar developments. Geophysics 75(5):75A103–75A120. doi: 10.1190/1.3480619 Google Scholar
  27. Song XF, Wang P, Yu JJ, Liu X, Liu JR, Yuan RQ (2011) Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ Earth Sci 62:787–796. doi: 10.1007/s12665-010-0566-7 CrossRefGoogle Scholar
  28. Steelman CM, Endres AL (2009) Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Reg Sci Technol 57:116–122. doi: 10.1016/j.coldregions.2009.01.007 CrossRefGoogle Scholar
  29. Suleman S, Wood MK, Shaht BH, Murray L (1995) Development of a rainwater harvesting system for increasing soil moisture in arid rangelands of Pakistan. J Arid Environ 31:471–481. doi: 10.1016/S0140-1963(05)80130-2 CrossRefGoogle Scholar
  30. Topp GC, Reynolds WD (1998) Time domain reflectometry: a seminal technique for measuring mass and energy in soil. Soil Tillage Res 47:125–132. doi: 10.1016/S0167-1987(98)00083-X CrossRefGoogle Scholar
  31. Topp GC, Davis JL, Annan AP (2003) The early development of TDR for soil measurements. Vadose Zone J 2:492–499. doi: 10.2136/vzj2003.4920 Google Scholar
  32. Ulaby FT, Dubois PC, van Zyl J (1996) Radar mapping of surface soil moisture. J Hydrol 184:57–84. doi: 10.1016/0022-1694(95)02968-0 CrossRefGoogle Scholar
  33. van Overmeeren RA, Sariowan SV, Gehrels JC (1997) Ground penetrating radar for determining volumetric soil water content; Results of comparative measurements at two test sites. J Hydrol 197:316–338. doi: 10.1016/S0022-1694(96)03244-1 CrossRefGoogle Scholar
  34. Wang XQ, Jiang J, Wang YC, Luo WL, Song CW, Chen JJ (2006) Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantünggüt Desert. Chin Sci Bull 51(Supp I):110–116. doi: 10.1007/s11434-006-8214-z
  35. Weihermüller L, Huisman JA, Lambot S, Herbst M, Vereecken H (2007) Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J Hydrol 340:205–216. doi: 10.1016/j.jhydrol.2007.03.013 CrossRefGoogle Scholar
  36. Westermann S, Wollschläger U, Boike J (2010) Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. Cryosphere 4:475–487. doi: 10.5194/tc-4-475-2010 CrossRefGoogle Scholar
  37. Wilcox CS, Fergusona JW, Fernandez GCJ, Nowak RS (2004) Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. J Arid Environ 56:129–148. doi: 10.1016/S0140-1963(02)00324-5 CrossRefGoogle Scholar
  38. Xu DH, Li JH, Fang HW, Wang G (2007) Changes in soil water content in the rhizosphere of Artemisia ordosica: evidence for hydraulic lift. J Arid Environ 69:545–553. doi: 10.1016/j.jaridenv.2006.11.001 CrossRefGoogle Scholar
  39. Yang HF, Qian YB, Jiang C, Zhao RF (2010) Spatial heterogeneity of soil chemical properties in the south Gurbantünggüt Desert. J Desert Res 30(2):319–325Google Scholar
  40. Yang ZP, Hua OY, Zhang XZ, Xu XL, Zhou CP, Yang WB (2011) Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environ Earth Sci 63:477–488. doi: 10.1007/s12665-010-0716-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yanfang Qin
    • 1
    • 2
  • Xi Chen
    • 1
  • Kefa Zhou
    • 1
  • Patrick Klenk
    • 3
  • Kurt Roth
    • 3
  • Li Sun
    • 1
  1. 1.Xinjiang Institute of Ecology and GeographyChinese Academy of ScienceUrumqiChina
  2. 2.Institution of Remote Sensing and Geographical Information System, School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Institute of Environmental PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations