Environmental Earth Sciences

, Volume 71, Issue 2, pp 849–861 | Cite as

Polychlorinated biphenyls residues in surface sediments of the eutrophic Chaohu Lake (China): characteristics, risk, and correlation with trophic status

  • Xiaowei Wang
  • Beidou XiEmail author
  • Shouliang HuoEmail author
  • Lin Deng
  • Qiang Li
  • Hongwei Pan
  • Jingtian Zhang
  • Hongliang Liu
Original Article


Twenty-eight polychlorinated biphenyls (PCB) congeners were measured in surface sediments from Chaohu Lake to assess their characteristics, potential risk, and the correlation with lake trophic status. PCB levels ranged from 11.074 to 42.712 ng g−1 dry weight (d.w.) in the western lake and 2.017 to 20.189 ng g−1 d.w. in the eastern lake. The highest concentrations were found at the sites near the inlets of western lake tributary rivers where big cities and industrial centers are located. Congeners concentrations showed decreasing order of tetra-CB > tri-CB > deca-CB (PCB-209 detected) > penta-CB > hexa-CB > di-CB > hepta-CB > Octa-CB. It indicated that light and heavy Aroclor mixtures were simultaneously used surrounding the lake basin. PCB levels in the western lake are potentially dangerous to humans and the local fauna. There was a significant positive relationship between tetra-CB (one abundant PCB congener) concentration distribution and sediment grain size in the 16–64 μm fraction, whereas a negative correlation was found in the 4–8 μm fraction. Furthermore, PCB distributions were positively correlated with the total organic carbon of sediments and lake trophic status, especially in the more seriously polluted western lake zone. However, the correlation completely disappeared in eastern lake zone. It suggested that PCB contamination might be attributed to industrial wastewaters and domestic sewages from western lake basin, reaching the lake through rivers, rains and floods.


Polychlorinated biphenyls  Sediment  Sources identification  Toxicity sources Trophic status 



This study is supported by the Mega-projects of Science Research for Water Environment Improvement (Program No. 2009ZX07106-001; 2012ZX07101-002), the National Natural Science Foundation of China (No. 40901248) and the China Environmental Public Welfare Program (2010009032).

Supplementary material

12665_2013_2487_MOESM1_ESM.doc (122 kb)
Supplementary material 1 (DOC 122 kb)


  1. Berglund O, Larsson P, Ewald G, Okla L (2001) Influence of trophic status on PCB distribution in lake sediments and biota. Environ Pollut 113(2):199–210CrossRefGoogle Scholar
  2. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40(6):1999–2013CrossRefGoogle Scholar
  3. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners-a mass balance approach. 1. Global production and consumption. Sci Total Environ 290(1–3):181–198CrossRefGoogle Scholar
  4. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  5. CCME (Canadian Council of Ministers of the Environment) (1999) Canadian Council of Ministers of the Environment Canadian sediment quality guidelines for the protection of aquatic life: polychlorinated biphenyls (PCBs). In: Canadian Environmental Quality Guidelines, Winnipeg, ManitobaGoogle Scholar
  6. Chen Y, Fan C, Teubner K, Dokulil M (2003) Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: an 8-year investigation. Hydrobiologia 506–509(15):273–279CrossRefGoogle Scholar
  7. China State Environmental Protection Administration (SEPA) (2003) Building the Capacity of the People’s Republic of China to Implement the Stockholm Convention on POPs and Develop a National Implementation Plan, GEF Project Brief (GF/CPR/02/010).
  8. Choi H, Al-Abed SR (2009) PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism. J Hazard Mater 165(1):860–866CrossRefGoogle Scholar
  9. Dachs J, Eisenreich SJ, Hoff RM (2000) Influence of eutrophication on air–water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ Sci Technol 34(6):1095–1102CrossRefGoogle Scholar
  10. Dachs J, Lohmann R, Ockenden WA, Mejanelle L, Eisenreich SJ, Jones KC (2002) Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol 36(20):4229–4237CrossRefGoogle Scholar
  11. Dai GH, Liu XH, Liang G, Han X, Liu S, Cheng DM, Gong WM (2011) Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J Environ Sci 23(10):1640–1649CrossRefGoogle Scholar
  12. Environment Canada (1997) Report of Environmental Protection Series Regulations/Guidelines/Codes of Reference methods (Report EPS 1/RM/31)Google Scholar
  13. Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155(1):1–12CrossRefGoogle Scholar
  14. Frame GM, Cochran JW, Bowadt SS (1996) Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener specific analysis. J High Resolut Chrom 19(12):657–668CrossRefGoogle Scholar
  15. He W, Qin N, Wang Y, He QS, Kong XZ, Ouyang HL, Xu FL (2011) Residues, source identification, and risk assessment of DDTs in surface water from Lake Chaohu. J Lake Sci 23(3):325–333 (in Chinese)Google Scholar
  16. Hurme S, Puhakka JA (2007) Characterization and fate of polychlorinated biphenyl contaminants in Kernaalanjärvi sediments. Boreal Environ Res 4:331–342Google Scholar
  17. Jeong GH, Kim HJ, Joo YJ, Kim YB, So HY (2001) Distribution characteristics of PCBs in the sediments of the lower Nakdong River, Korea. Chemosphere 44(6):1403–1411CrossRefGoogle Scholar
  18. Jiang K, Li LJ, Chen YD, Jin J (1997) Determination of PCDD/Fs and dioxin-like PCBs in Chinese commercial PCBs and emissions from a testing PCB incinerator. Chemosphere 34(5):941–950CrossRefGoogle Scholar
  19. Jin X, Tu Q (eds) (1990) The standard methods for observation and analysis in Lake eutrophication, 2nd (edn) Chinese Environmental Science Press, Beijing (in Chinese)Google Scholar
  20. Li ZH, Zlabek V, Turek J, Velisek J, Pulkrabova J, Kolarova J, Sudova E, Berankova P, Hradkova P, Hajslova J, Randak T (2011) Evaluating environmental impact of STPs situated on streams in the Czech Republic: An integrated approach to biomonitoring the aquatic environment. Water Res 45(3):1403–1413CrossRefGoogle Scholar
  21. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuary sediments. Environ Manage 19(1):81–97CrossRefGoogle Scholar
  22. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12(2):343–346CrossRefGoogle Scholar
  23. Marvin CH, Painter S, Charlton MN, Fox ME, Thiessen PAL (2004) Trends in spatial and temporal levels of persistent organic pollutants in Lake Erie sediments. Chemosphere 54(1):33–40CrossRefGoogle Scholar
  24. Miller S (1982) The Persistent PCB Problem. Environ Sci Technol 16(2):98A–99ACrossRefGoogle Scholar
  25. Newman JW, Becker JS, Blondina G, Tjeerdema RS (1998) Quantitation of Aroclors using congener-specific results. Environ Toxicol Chem 17(11):2159–2167CrossRefGoogle Scholar
  26. Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Di Guardo A, Ghirardello D, Hansen KM, Jarvis A, Lindroth A, Ludwig B, Monteith D, Perlinger JA, Scheringer M, Schwendenmann L, Semple KT, Wick LY, Zhang G, Jones KC (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44(17):6526–6531CrossRefGoogle Scholar
  27. OSPAR Commission (2000) Quality Status Report 2000. OSPAR Commission, LondonGoogle Scholar
  28. Pozo K, Urrutia R, Barra R, Mariottini M, Treutler HC, Araneda A, Focardi S (2007) Records of polychlorinated biphenyls (PCBs) in sediments of four remote Chilean Andean Lakes. Chemosphere 66(10):1911–1921CrossRefGoogle Scholar
  29. Rawn DFK, Lockhart WL, Wilkinson P, Savoie DA, Rosenberg GB, Muir DCG (2001) Historical contamination of Yukon Lake sediments by PCBs and organochlorine pesticides: influence of local sources and watershed characteristics. Sci Total Environ 280(1–3):17–37CrossRefGoogle Scholar
  30. Rowe AA, Totten LA, Xie M, Fikslin TJ, Eisenreich SJ (2007) Air–water exchange of polychlorinated biphenyls in the Delaware River. Environ Sci Technol 41(4):1152–1158CrossRefGoogle Scholar
  31. Rushneck DR, Beliveau A, Fowler B, Hamilton C, Hoover D, Kaye K, Berg M, Smith T, Telliard WA, Roman H, Ruder E, Ryan L (2004) Concentrations of dioxin-like PCB congeners in unweathered Aroclors by HRGC/HRMS using EPA Method 1668A. Chemosphere 54(1):79–87CrossRefGoogle Scholar
  32. Shang GP, Shang JC (2005) Causes and control countermeasures of eutrophication in Chaohu Lake, China. Chinese Geogr Sci 15(4):348–354CrossRefGoogle Scholar
  33. Shi YX (2006) Sedimentary and Geochemical Records of Climate and Environmental Change for the Chaohu-Hangpu River Catchment in Anhui Province. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Doctoral DissertationGoogle Scholar
  34. Sivey JD, Lee CM (2007) Polychlorinated biphenyl contamination trends in Lake Hartwell, South Carolina (USA): sediment recovery profiles spanning two decades. Chemosphere 66(10):1821–1828CrossRefGoogle Scholar
  35. Van Bavel B, Abad E (2008) Long-term worldwide QA/QC of dioxins and dioxin-like PCBs in environmental samples. Anal Chem 80(11):3956–3964CrossRefGoogle Scholar
  36. Van den Berg M, Birnbaum L, Bosveld AT, Brunström B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, Van Leeuwen FX, Liem AK, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106(12):775–792CrossRefGoogle Scholar
  37. Van den Berg M, Birnbaum L, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241CrossRefGoogle Scholar
  38. Vives I, Canuti E, Castro-Jiménez J, Christoph EH, Eisenreich SJ, Hanke G, Huber T, Mariani G, Mueller A, Skejo H, Umlauf G, Wollgast J (2007) Occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Lake Maggiore (Italy and Switzerland). J Environ Monit 9(6):589–598CrossRefGoogle Scholar
  39. Vogelsang C, Grung M, Jantsch TG, Tollefsen KE, Liltved H (2006) Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Res 40(19):3559–3570CrossRefGoogle Scholar
  40. Wan X, Pan XJ, Wang B, Zhao SM, Hu P, Li F, Boulanger B (2011) Distributions, historical trends, and source investigation of polychlorinated biphenyls in Dianchi Lake, China. Chemosphere 85(3):361–367CrossRefGoogle Scholar
  41. Wang MC, Liu XQ, Zhang JH (2002) Evaluate method and classification standard on lake eutrophication. Environ Monit China 18(5):47–49 (in Chinese)Google Scholar
  42. Wang YW, Li XM, Li A, Wang T, Zhang QH, Wang P, Fu JJ, Jiang GB (2007) Effect of municipal sewage treatment plant effluent on bioaccumulation of polychlorinated biphenyls and polybrominated diphenyl ethers in the recipient water. Environ Sci Technol 41(17):6026–6032CrossRefGoogle Scholar
  43. Wang JZ, Zhang K, Liang B, Zeng EY (2011) Occurrence, source apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in surface sediments of Chaohu, one of the most polluted lakes in China. J Environ Monit 13(11):3336–3342CrossRefGoogle Scholar
  44. Wiegel J, Wu QZ (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32(1):1–15CrossRefGoogle Scholar
  45. Xing Y, Lu Y, Dawson RW, Shi Y, Zhang H, Wang T, Liu W, Ren H (2005) A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60(6):731–739CrossRefGoogle Scholar
  46. Xu K, Liu F, An Z, Gao Y, Han X, Sun Q (2011) Spatial and temporal variations of phosphorus forms in surface sediments of Chaohu Lake. Environ Sci 32(11):3255–3263 (in Chinese)Google Scholar
  47. Yang ZF, Shen ZF, Gao F, Tang ZW, Niu JF, He Y (2009a) Polychlorinated biphenyls in urban lake sediments from wuhan, central China: occurrence, composition, and sedimentary record. J Environ Qual 38(4):1441–1448CrossRefGoogle Scholar
  48. Yang ZF, Shen ZF, Gao F, Tang ZW, Niu JF (2009b) Occurrence and possible sources of polychlorinated biphenyls in surface sediments from the Wuhan reach of the Yangtze River, China. Chemosphere 74(11):1522–1530CrossRefGoogle Scholar
  49. Yang HY, Xue B, Jin LX, Zhou SS, Liu WP (2011) Polychlorinated biphenyls in surface sediments of Yueqing Bay, Xiangshan Bay, and Sanmen Bay in East China Sea. Chemosphere 83(2):137–143CrossRefGoogle Scholar
  50. Yu HB, Xi BD, Jiang JY, Heaphy MJ, Wang HL, Li DL (2011) Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China. Environ Sci Pollut Res 18(8):1333–1342CrossRefGoogle Scholar
  51. Zan FY, Huo SL, Xi BD, Li QQ, Liao HQ, Zhang JT (2011a) Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China. Environ Earth Sci 62(8):1643–1653CrossRefGoogle Scholar
  52. Zan FY, Huo SL, Xi BD, Su J, Li X, Zhang JT, Yeager KM (2011b) A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China. J Environ Monit 13:2788–2797CrossRefGoogle Scholar
  53. Zan FY, Huo SL, Xi BD, Liao HQ, Zhang JT, Yeage KM (2012) A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China. J Environ Monit 14(3):804–816CrossRefGoogle Scholar
  54. Zhang QH, Jiang GB (2005) Polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls in sediments and aquatic organisms from the Taihu Lake, China. Chemosphere 61(3):314–322CrossRefGoogle Scholar
  55. Zhang S, Li CM, Huang SM, Zheng J (2008) Trophic states and nutrient storage of reservoirs in Chongqing, China. J Geochem 27(3):310–316Google Scholar
  56. Zhao XR, Zheng BH, Qin YW, Jiao LX, Zhang L (2010) Grain size effect on PBDE and PCB concentrations in sediments from the intertidal zone of Bohai Bay, China. Chemosphere 81:1022–1026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaowei Wang
    • 1
    • 2
  • Beidou Xi
    • 2
    Email author
  • Shouliang Huo
    • 2
    Email author
  • Lin Deng
    • 3
  • Qiang Li
    • 2
  • Hongwei Pan
    • 2
  • Jingtian Zhang
    • 2
  • Hongliang Liu
    • 2
  1. 1.State Key Laboratory of Water Environment Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
  3. 3.Module R&D Center, BOE Hyundai LCD Inc.BeijingChina

Personalised recommendations