Environmental Earth Sciences

, Volume 70, Issue 5, pp 2335–2348 | Cite as

Nitrate contamination in groundwater in the Sidi Aïch–Gafsa oases region, Southern Tunisia

  • Younes HamedEmail author
  • Sadek Awad
  • Amina Ben Sâad
Original Article


Groundwater pumped from the semi-confined Complex Terminal (CT) aquifer is an important production factor in irrigated oases agriculture in southern Tunisia. A rise in the groundwater salinity has been observed as a consequence of increasing abstraction from the aquifer during the last few decades. All sources of contamination were investigated using hydrochemical data available from the 1990s. Water samples were taken from wells tapping both the CT and the shallow aquifers and analyzed with regard to chemistry tracers. Hydrochemical and water quality data obtained through a sampling period (December 2010) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The concentration of nitrate in an groundwater-irrigated area in Gafsa oases basin was studied, where abstraction from an unconfined CT aquifer has increased threefold over 25 years to 34 million m3/year; groundwater levels are falling at up to 0.7 m/year; and groundwater is increasingly mineralised (TDS increase from 500 to 4,000 mg/L), with nitrate concentrations ranging from 16 to 320 mg/L.


Groundwater salinity Nitrate Hydrochemical data Gafsa oases Tunisia 



The authors wish to express their thanks to the editor and the anonymous reviewers for their valuable suggestions and would like to thank the staff members of Gafsa Water Resources Division/Agriculture Ministry, the members of phosphate Company of Gafsa “CPG”, the Water, Energy and Environmental Laboratory (L3E)-ENIS, Sfax, Tunisia, the Regional Blood Transfusion Centre of Gafsa and the members of MCEMA laboratory for their help during field work.


  1. Adams S, Tredoux G, Harris C, Titus R, Pietersen K (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103CrossRefGoogle Scholar
  2. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA-AWWA-WET, Washington, DCGoogle Scholar
  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, RotterdamCrossRefGoogle Scholar
  4. Avery A (1999) Infantile methemoglobinemia: reexamining the role of drinking water nitrates. Children Health Review. Environ Health Perspect 107(7):583–586CrossRefGoogle Scholar
  5. Ball JW, Nordstrom DK (1991) WATEQ4F-user’s manual with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. United States Geological Survey, Open-File Report, pp 90–129Google Scholar
  6. Belloumi M, Matoussi M (2006) A stochastic frontier approach for measuring technical efficiencies of date farms in southern Tunisia. Agric Resour Econ Rev 35:285–298Google Scholar
  7. Ben Moussa A, Bel Haj Salem S, Zouari K, Jlassi F (2010) Hydrochemical and isotopic investigation of the groundwater composition of an alluvial aquifer, Cap Bon Peninsula, Tunisia. Carbonates Evaporites 25:161–176. doi: 10.1007/s13146-010-0020-7 CrossRefGoogle Scholar
  8. Bengtsm G, Annadotter H (1989) Nitrate reduction in a groundwater microcosm determined by 15N gas chromatograph mass spectrometry. Appl Environ Microbiol 55(11):2861–2870Google Scholar
  9. Bohike JK, Smith RL, Hannon JE (2007) Isotopic analysis of N and O in nitrite and 383 nitrate by sequential selective bacterial reduction to N2O. Anal Chem 79(384):5888–5895Google Scholar
  10. Dillon TJ, Crowley JN (2008) Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmos Chem Phys 8:4877–4889CrossRefGoogle Scholar
  11. Dissanayake CB, Weerasooriya SVR (1987) Medical geochemistry of nitrates and human cancer in Sri Lanka. Int J Environ Stud 30:145–156CrossRefGoogle Scholar
  12. Dlala M, Hfaiedh M (1993) Le séisme du 7 Novembre 1989 à Métlaoui (Tunisie Méridionale): une tectonique active en compression. CR Acad Sci 317:1297–1307Google Scholar
  13. DGRE (Direction Générale des Ressources en Eau) (2010) Annuaire de l’exploitation des nappes de la Tunisie. DGRE, Tunis, TunisieGoogle Scholar
  14. Edmunds WM, Shand P, Guendouz AH, Moulla AS, Mamou A, Zouari K (1997) Recharge characteristics and groundwater quality of the Grand Erg Oriental basin. BGS, London, UKGoogle Scholar
  15. Farhat H, Moumni L (1989) Etude hydrogéologique de la nappe de Gafsa Nord. DGRE, TunisGoogle Scholar
  16. Gardner G (1996) Shrinking fields: cropland loss in a world of eight billion. Worldwatch paper no. 131. In: Worldwatch papers. The Worldwatch Institute, Washington, DCGoogle Scholar
  17. Gautier M (1953) Les chotts, machines évaporitives complexes. Centre National de la Recherche Scientifique (CNRS). Colloques Internationaux 35:317–325Google Scholar
  18. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources: human causes, extent, management and case studies. CABI, Wallingford, UKGoogle Scholar
  19. Gi-Tak C, Kangjoo K, Seong T, Kyoung H, Soon O, Byoung Y, Hyoung S, Chul W (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere 55:369–378CrossRefGoogle Scholar
  20. Guendouz A, Moulla AS, Remini B, Michelot JL (2002) Hydrochemical and isotopic behaviour of a Saharan phreatic aquifer suffering severe natural and anthropic constraints (case of Oued-Souf region, Algeria). J Hydrol 14:955–968Google Scholar
  21. Hamed Y (2009) Caractérisation hydrogéologique, hydrochimique et isotopique du système aquifère du bassin minier de Moularés-Tamerza. Ph.D. thesis, University of Sfax, pp 280Google Scholar
  22. Hamed Y (2011) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arab J Geosci doi. doi: 10.1007/s12517-011-0393-5 Google Scholar
  23. Hamed Y, Dassi L, Ahmadi R, Ben Dhia H (2008) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia. Hydrological Sciences–Journal–des Sciences Hydrologiques 53(5) DecemberGoogle Scholar
  24. Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2010) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci. doi: 10.1007/s12665-010-0806-x
  25. Hasson AS, Tyndall GS, Orlando JJ (2004) A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2) and acetonyl peroxy (CH3C(O)CH2O2) radicals. J Phys Chem A 108:5979–5989CrossRefGoogle Scholar
  26. Horriche JF (2004) Contribution à l’analyse et à la rationalisation des réseaux piézométriques. Thèse Univ Tunis, Tunisia, p 260Google Scholar
  27. HUS (Hôpital universitaire de Sfax) (2009) Analyse bactériologique des eaux du bassin minier de Gafsa. Rap InterGoogle Scholar
  28. Jacobson MZ (2002) Atmospheric pollution: history science and regulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Jagiella S, Zabel F (2007) Reaction of phenylperoxy radicals with NO2 at 298 K. Phys Chem Chem Phys 9:5036–5051CrossRefGoogle Scholar
  30. Jalali M (2007) Assessment of the chemical components of Famenin groundwater, western Iran. Environ Geochem Health 29:357–374CrossRefGoogle Scholar
  31. Jenkin ME, Hurley MD, Wallington TJ (2007) Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Phys Chem Chem Phys 9:3149–3162CrossRefGoogle Scholar
  32. Lelieveld J, Berresheim H, Borrmann S, Crutzen PJ, Dentener FJ, Fischer H, Feichter J, Flatau PJ, Heland J, Holzinger R, Korrmann R, Lawrence MG, Levin Z, Markowicz KM, Mihalopoulos N, Minikin A, Ramanathan V, de Reus M, Roelofs GJ, Scheeren HA, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J, Ziereis H (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799CrossRefGoogle Scholar
  33. Lunkad SK (1994) Rising nitrate levels in groundwater and increasing N-Fertilizer consumption. J Bhu Jal NewsGoogle Scholar
  34. Martinez DE, Bocanegra EM (2002) Hydrogeochemistry and cation exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10:393–408CrossRefGoogle Scholar
  35. Mohan S (2002) Return flow study in Periyar main canal of Periyar–Vaigai Basin. Technical Report, Public Works Department (PWD), Government of Tamilnadu (unpublished)Google Scholar
  36. Mokadem N, Younes H, Jamel I, Hfaid M, Ben Dhia H (2012) Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar oasis area, Southwest Tunisia. Quaternary International xxx:1–17Google Scholar
  37. Orlando JJ, Tyndall GS (2001) The atmospheric chemistry of the HC(O)CO radical. Int J Chem Kinet 33:149–156CrossRefGoogle Scholar
  38. OSS (2003) Système aquifère du Sahara septentrional. Observatoire du Sahara et du Sahel. UNESCO, Technical Report 9973–856, TunisGoogle Scholar
  39. Pandey Ashok, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of lipases in biotechnology. Biotechnol Appl Biochem 29:119–131Google Scholar
  40. Reneau SL, Katzman D, Kuyumjian GA, Lavine A, Malmon D (2007) Sediment delivery after a wildfire. Geological Society of America 2:151–154Google Scholar
  41. Rightmire CT (1978) Seasonal variation in pCO2 and 13C content of soil atmosphere. Water Resour Res 14:691CrossRefGoogle Scholar
  42. Rouabhia A, Baali F, Kherici N, Djabri L (2004) Vulnérabilité et risque de pollution des eaux souterraines de la nappe des sables miocènes de la plaine d’El MA EL Abiod (Algérie), Revue Sécheresse, vol 15, no 4Google Scholar
  43. Rouabhia A, Baali F, Fehdi Ch, Kherici N, Djabri L (2008a) Hydrochemical and isotopic investigation of a sandstone aquifer groundwater in a semi arid region, El Ma El Abiod, Algeria. J Environ Geol (Springer) Environ Geol. no 254. doi: 10.1007/s00254-008-1451-5
  44. Schulz E, Abichou A, Chkir N, Hachicha T, Pomel S, Salzman U, Zouari K (2002) Sebkhas as ecological archives and the vegetation and landscape history of southeastern Tunisia during the last two millennia. J Afr Earth Sci 34:223–229CrossRefGoogle Scholar
  45. Swezey CS (2003) The role of climate in the creation and destruction of continental stratigraphic records: an example from the northern margin of the Sahara Desert. Climate controls on stratigraphy. SEPM Spec Publ 77:207–225Google Scholar
  46. Tarki M, Dassi L, Hamed Y, Jedoui Y (2010) Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environ Earth Sci. doi: 10.1007/s12665-010-0820-z Google Scholar
  47. TCBS-Tunisian Central Bureau of Statistics (2009) Recensement générale de la population Tunisienne et de l’habitatGoogle Scholar
  48. UNESCO (1972) Etude des ressources en eau du Sahara Septentrional. Projet ERESS. Nappe du Complexe Terminal. Tech Rep 6:44Google Scholar
  49. UNESCO/FAO (1963) Carte bioclimatique de la Zone Méditerrané [Bioclimatic map of the Mediterranean zone]. UNESCO, New York, FAO, RomeGoogle Scholar
  50. US EPA Office of Water (WH-550) (1991) Is your drinking water safe? EPA 570 9-91-005. (this document is no longer available on website)Google Scholar
  51. Van der Weijden CH, Pacheco FAL (2003) Hydrochemistry, weathering and weathering rates on Madeira IslandGoogle Scholar
  52. Wallin B, Gaye C, Gourcy L, Aggarwal P (2005) Isotope methods for management of shared aquifers in Northern Africa. Groundwater 43:744–749CrossRefGoogle Scholar
  53. WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, GenevaGoogle Scholar
  54. WHO (2006) World Health Organization. Guidelines for drinking water quality, 3rd edn, incorporating first addendum. Available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of Sciences of GabesUniversity of Hatem Ben TaherGabesTunisia
  2. 2.Water, Energy and Environmental Laboratory (L3E), ENISSfaxTunisia
  3. 3.Laboratory MCEM (Materials, Catalysis, Environment and Analytical Methods), Faculty of AgricultureLebanese UniversityBeirutLebanon
  4. 4.Regional Blood Transfusion Centre of GafsaGafsaTunisia

Personalised recommendations