Environmental Earth Sciences

, Volume 71, Issue 1, pp 163–181 | Cite as

Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain

  • R. Tomás
  • R. Romero
  • J. Mulas
  • J. J. Marturià
  • J. J. Mallorquí
  • J. M. Lopez-Sanchez
  • G. Herrera
  • F. Gutiérrez
  • P. J. González
  • J. Fernández
  • S. Duque
  • A. Concha-Dimas
  • G. Cocksley
  • C. Castañeda
  • D. Carrasco
  • P. Blanco
Original Article


Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.


Subsidence DInSAR Settlement Remote sensing Spain Technique-cost 



The authors thank O. Monserrat and M. Crosetto (Institut de Geomàtica) for their useful comments and the review of first version of the manuscript. The ERS and ENVISAT images mentioned in this work were provided by the European Space Agency (ESA) in the framework of the EO Cat.1-2494 and Cat.1-3462 projects and the Terrafirma GMES Project. The TerraSAR-X images were provided by DLR in the framework of the scientific project GEO0389. The different research areas included in this paper has been supported by the projects: CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, AYA2010-17448, IPT-2011-1234-310000, TEC-2008-06764, ACOMP/2010/082, AGL2009-08931/AGR, 2012GA-LC-036, 2003-03-4.3-I-014, CGL2006-05415, BEST-2011/225, CGL2010-16775, TEC2011-28201, 2012GA-LC-021 and the Banting Postdoctoral Fellowship to PJG. This research is a contribution of the Moncloa Campus of International Excellence (UCM-UPM, CSIC).


  1. Arnaud A, Adam N, Hanssen R, Inglada J, Duro J, Closa J, Eineder M ASAR ERS interferometric phase continuity. In: Geoscience and remote sensing symposium, 2003. IGARSS ‘03. Proceedings. 2003 IEEE International, 21–25 July 2003 vol 1132 pp 1133–1135 doi: 10.1109/igarss.2003.1294035
  2. Autin WJ (2002) Landscape evolution of the Five Islands of south Louisiana: scientific policy and salt dome utilization and management. Geomorphology 47(2–4):227–244. doi: 10.1016/s0169-555x(02)00086-7 CrossRefGoogle Scholar
  3. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14(4):R1CrossRefGoogle Scholar
  4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. doi: 10.1109/tgrs.2002.803792 CrossRefGoogle Scholar
  5. Blanco P, Arbiol R, Palà V (2008) ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring applications. Paper presented at the ALOS 2008 Symposium, Rhodes, 3–7 NovemberGoogle Scholar
  6. Bru G, Herrera G, Tomás R, Duro J, De la Vega R, Mulas J (2013) Control of deformation of buildings affected by subsidence using persistent scatterer interferometry. Struct Infrastruct Eng 9:188–200. doi: 10.1080/15732479.2010.519710 Google Scholar
  7. Castañeda C, Gutiérrez F, Galve JP, Pourthié N, Souyris JC, Manunta M (2009a) Comparación de dos técnicas de interferometría radar mediante deformaciones generadas por disolución de evaporitas, minería y deslizamientos (Valle del Ebro, España). In: Montesinos S, Fernández L (eds) Teledetección: agua y desarrollo sostenible. Zaragoza, Spain, pp 261–264Google Scholar
  8. Castañeda C, Gutiérrez F, Manunta M, Galve JP (2009b) DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surf Process Landf 34(11):1562–1574. doi: 10.1002/esp.1848 CrossRefGoogle Scholar
  9. Castañeda C, Pourthie′ N, Souyris J-C (2011) Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain. Int J Remote Sens 32(7):1861–1884. doi: 10.1080/01431161003631584 CrossRefGoogle Scholar
  10. Colesanti C, Wasowski J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88(3–4):173–199. doi: 10.1016/j.enggeo.2006.09.013 CrossRefGoogle Scholar
  11. Concha A, Ripoll J, Piña J, Gabàs A, Piña E (2010) Two-dimensional coupled numerical modelling of subsidence due to water extraction at the Lower Llobregat River, Spain. Paper presented at the Land Subsidence, Associated hazards and the role of natural resources development. Proceedings of EISOLS 2010, Querétaro, MexicoGoogle Scholar
  12. Corapcioglu MY (1989) Land subsidence a state of the art review. In: Bear M, Corapcioglu MY (eds) Fundamentals of transport phenomena in porous media Nato. ASI Series. Martinus Nijhott Publishers, Dordrecht, pp 369–444Google Scholar
  13. Crosetto M, Crippa B, Biescas E (2005a) Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng Geol 79(1–2):81–91. doi: 10.1016/j.enggeo.2004.10.016 CrossRefGoogle Scholar
  14. Crosetto M, Crippa B, Biescas E, Monserrat O, Agudo M, Fernández P (2005b) Land deformation monitoring using SAR interferometry: state-of-the-art. Photogramm Fernerkundung, Geoinformation 6:497–510Google Scholar
  15. Crosetto M, Monserrat O, Iglesias R, Crippa B (2010) Persistent Scatterer Interferometry: potential, limits and initial C- and X-band comparison. Photogramm Eng Remote Sens 76(9):9CrossRefGoogle Scholar
  16. De Bruyn IA, Bell FG (2001) The occurrence of sinkholes and subsidence depressions in the far west Rand and Gauteng Province, South Africa, and their engineering implications. Environ Eng Geosci 7(3):281–295. doi: 10.2113/gseegeosci.7.3.281 Google Scholar
  17. Fernandez P, Irigaray C, Jimenez J, El Hamdouni R, Crosetto M, Monserrat O, Chacon J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105(1–2):84–101. doi: 10.1016/j.enggeo.2008.12.005 CrossRefGoogle Scholar
  18. Fernández J, Vieira R, Díez JL, Toro C (1992) Investigations on crustal thickness, heat flow and gravity tide relationship in Lanzarote Island. Phys Earth Planet Inter 74(3–4):10. doi: 10.1016/0031-9201(92)90010-S Google Scholar
  19. Fernández J, Romero R, Carrasco D, Luzón F, Araña V (2002) InSAR volcano and seismic monitoring in Spain. Results for the period 1992–2000 and possible interpretations. Opt Lasers Eng 37(2–3):285–297. doi: 10.1016/s0143-8166(01)00085-9 CrossRefGoogle Scholar
  20. Fernández J, Romero R, Carrasco D, Tiampo KF, Rodríguez-Velasco G, Aparicio A, Araña V, González-Matesanz FJ (2005) Detection of displacements on Tenerife Island, Canaries, using radar interferometry. Geophys J Int 160(1):33–45. doi: 10.1111/j.1365-246X.2005.02487.x CrossRefGoogle Scholar
  21. Fernández J, Tizzani P, Manzo M, Borgia A, González PJ, Martí J, Pepe A, Camacho AG, Casu F, Berardino P, Prieto JF, Lanari R (2009) Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys Res Lett 36(4):L04306. doi: 10.1029/2008gl036920 CrossRefGoogle Scholar
  22. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi: 10.1109/36.898661 CrossRefGoogle Scholar
  23. Fernández J, Yu T-T, Rodriguez-Velasco G, González-Matesanz J, Romero R, Rodriguez G, Quirós R, Dalda A, Aparicio A, Blanco MJ (2003) New geodetic monitoring system in the volcanic island of Tenerife, Canaries, Spain. J Vol Geotherm Res 124(3–4):241–253. doi: 10.1016/s0377-0273(03)00073-8. ISSN 0377-0273Google Scholar
  24. Ferretti A, Tamburini A, Novali F, Fumagalli A, Falorni G, Rucci A (2011) Impact of high resolution radar imagery on reservoir monitoring. Energy Proced 4:3465–3471. doi: 10.1016/j.egypro.2011.02.272 CrossRefGoogle Scholar
  25. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183–9191. doi: 10.1029/JB094iB07p09183 CrossRefGoogle Scholar
  26. Galloway D, Burbey T (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486. doi: 10.1007/s10040-011-0775-5 CrossRefGoogle Scholar
  27. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10):2573–2585. doi: 10.1029/98wr01285 CrossRefGoogle Scholar
  28. Galloway DL, Jones DR, Ingebritsen SE (eds) (1999) Land Subsidence in the United States US geological survey circular vol 1182. US Geological Survey, Reston, VirginiaGoogle Scholar
  29. Galve JP, Gutiérrez F, Guerrero J, Alonso J, Diego I (2012) Optimizing the application of geosynthetics to roads in sinkhole-prone areas on the basis of hazard models and cost-benefit analyses. Geotext Geomembr 34:80–92. doi: 10.1016/j.geotexmem.2012.02.010 CrossRefGoogle Scholar
  30. Gonzalez de Vallejo L, Ferrer M (2011) Geol Eng 1ednGoogle Scholar
  31. González PJ, Fernández J (2011a) Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology. doi: 10.1130/g31900.1 Google Scholar
  32. González PJ, Fernández J (2011b) Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote. Canary Islands. J Geophys Res 116(B10):B10404. doi: 10.1029/2011jb008412 CrossRefGoogle Scholar
  33. González PJ, Tiampo KF, Camacho AG, Fernández J (2010) Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): implications on the stability of steep-sided volcano flanks at oceanic islands. Earth Planet Sci Lett 297(3–4):545–557. doi: 10.1016/j.epsl.2010.07.006 CrossRefGoogle Scholar
  34. Guerrero J, Gutiérrez F, Bonachea J, Lucha P (2008) A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid–Barcelona high-speed railway built over gypsum- and salt-bearing evaporites (NE Spain). Eng Geol 102(1–2):62–73. doi: 10.1016/j.enggeo.2008.07.010 CrossRefGoogle Scholar
  35. Gutiérrez F, Galve J, Lucha P, Bonachea J, Jordá L, Jordá R (2009) Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique (Zaragoza city, NE Spain). Environ Geol 58(5):1107–1122. doi: 10.1007/s00254-008-1590-8 CrossRefGoogle Scholar
  36. Hanssen RF (2001) Radar interferometry. Data interpretation and error analysis, vol 2. Remote sensing and digital image processing. Springer, New YorkGoogle Scholar
  37. Henderson FM, Lewis AJ (eds) (1998) Principles and application of imaging radar. Manual of remote sensing, vol 2. Wiley, New YorkGoogle Scholar
  38. Herrera G, Tomás R, Lopez-Sanchez JM, Delgado J, Mallorqui JJ, Duque S, Mulas J (2007) Advanced DInSAR analysis on mining areas: la Union case study (Murcia, SE Spain). Eng Geol 90(3–4):148–159CrossRefGoogle Scholar
  39. Herrera G, Fernández JA, Tomás R, Cooksley G, Mulas J (2009a) Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data—modelling and validation. Nat Hazards Earth Syst Sci 9(3):647–661. doi: 10.5194/nhess-9-647-2009 CrossRefGoogle Scholar
  40. Herrera G, Tomás R, Lopez-Sanchez JM, Delgado J, Vicente F, Mulas J, Cooksley G, Sanchez M, Duro J, Arnaud A, Blanco P, Duque S, Mallorqui JJ, De la Vega-Panizo R, Monserrat O (2009b) Validation and comparison of advanced differential interferometry techniques: Murcia metropolitan area case study. ISPRS J Photogramm Remote Sens 64(5):501–512CrossRefGoogle Scholar
  41. Herrera G, Tomás R, Monells D, Centolanza G, Mallorquí JJ, Vicente F, Navarro VD, Lopez-Sanchez JM, Sanabria M, Cano M, Mulas J (2010) Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng Geol 116(3–4):284–295CrossRefGoogle Scholar
  42. Herrera G, Álvarez Fernández MI, Tomás R, González-Nicieza C, López-Sánchez JM, Álvarez Vigil AE (2012) Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Eng Fail Anal 24:67–76. doi: 10.1016/j.engfailanal.2012.03.003 CrossRefGoogle Scholar
  43. Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13. doi: 10.1016/j.tecto.2011.10.013 CrossRefGoogle Scholar
  44. Jackson JA (1997) Glossary of geology, 4th edn edn. American Geological Institute, AlexandriaGoogle Scholar
  45. Kampes BM (2006) Radar Interferometry. Persistent Scatterer Technique, vol 12. Remote sensing and digital image processing. SpringerGoogle Scholar
  46. Kappel WM, Yager RM, Todd MS (1999) The Retsof Salt Mine Collapse. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land Subsidence in the United States, vol 1182., US Geological Survey CircularUS Geological Survey, Reston, pp 111–120Google Scholar
  47. Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007) An Overview of the Small Baseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. In: Wolf D, Fernández J (eds) Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change. Pageoph Topical Volumes. Birkhäuser Basel, pp 637-661. doi: 10.1007/978-3-7643-8417-3_2
  48. López F, Buxó P, Palau J, Marturià J, Concha A, Martínez P (2010) Evaluation of the subsidence and risk of collapse in the estació neighbourhood of the Sallent City (Spain). Paper presented at the Land Subsidence, Associated hazards and the role of natural resources development. Proceedings of EISOLS 2010, Querétaro, MexicoGoogle Scholar
  49. Lundgren P, Usai S, Sansosti E, Lanari R, Tesauro M, Fornaro G, Berardino P (2001) Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. J Geophys Res 106((B9)):19355–19366. doi: 10.1029/2001jb000194 CrossRefGoogle Scholar
  50. Mancini F, Stecchi F, Zanni M, Gabbianelli G (2009) Monitoring ground subsidence induced by salt mining in the city of Tuzla (Bosnia and Herzegovina). Environ Geol 58(2):381–389. doi: 10.1007/s00254-008-1597-1 CrossRefGoogle Scholar
  51. Marturia J, Ripoll J, Concha A, Barberà M (2010) Monitoring techniques for analysing subsidence: a basis for implementing an early warning system. Paper presented at the Land Subsidence, Associated hazards and the role of natural resources development. Proceedings of EISOLS 2010, Querétaro, MexicoGoogle Scholar
  52. Marturià J, de Diego J, Martínez P, Roca A (2006) Implementation of a subsidence risk management system. Paper presented at the 5th European Congress on Regional Geoscience Cartography and Informations Systems, BarcelonaGoogle Scholar
  53. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36(4):441–500. doi: 10.1029/97rg03139 CrossRefGoogle Scholar
  54. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138–142CrossRefGoogle Scholar
  55. Monserrat O (2012) Deformation measurement and monitoring with Ground-Based SAR. Universitat Politècnica de Catalunya, BarcelonaGoogle Scholar
  56. Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41(10):2243–2253CrossRefGoogle Scholar
  57. Mora O, Arbiol R, Palà V (2007) The experience of the cartographic Institute of Catalonia (ICC) on continuous DInSAR monitoring of large areas. Paper presented at the Envisat symposium Montreux, SwitzerlandGoogle Scholar
  58. Mulas J, Aragón R, Martínez M, Lambán J, García-Aróstegui JL, Fernández-Grillo AI, Hornero J, Rodríguez J, Rodríguez JM (2003) Geotechnical and hydrogeological analysis of land subsidence in Murcia (Spain). Mater Geoenviron 50:249–252Google Scholar
  59. Navarro-Sanchez VD, Lopez-Sanchez JM (2012) Improvement of Persistent-Scatterer Interferometry performance by means of a polarimetric optimization. Geosci Remote Sens Lett IEEE 9(4):609–613. doi: 10.1109/lgrs.2011.2176715 CrossRefGoogle Scholar
  60. Navarro-Sanchez VD, Lopez-Sanchez JM, Vicente-Guijalba F (2010) A contribution of Polarimetry to Satellite Differential SAR Interferometry: increasing the number of pixel candidates. Geosci Remote Sens Lett IEEE 7(2):276–280. doi: 10.1109/lgrs.2009.2033013 CrossRefGoogle Scholar
  61. Oller P, Gonzalez M, Pinyol J, Marturià J, Martínez P (2011) Geohazards mapping in Catalonia. Journal Torrent, Avalanche, Landslide Rock Fall. Engineering 74:8Google Scholar
  62. Palà V, Mora O, Arbiol R, Marturià J (2006) Products derived from an advanced DInSAR-GIS application for risk management. In: ISPRS (ed) Geospatial databases for sustainable development. Goa, p 5Google Scholar
  63. Peltzer G, Rosen P (1995) Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry. Science 268(5215):1333–1336. doi: 10.1126/science.268.5215.1333 CrossRefGoogle Scholar
  64. Pipia L, Aguasca A, Fabregas X, Mallorqui JJ, Lopez-Martinez C, Marturia J (2007) Mining induced subsidence monitoring in urban areas with a ground-based SAR. In: urban remote sensing joint event, 11–13 April 2007, pp 1–5. doi: 10.1109/urs.2007.371881
  65. Pipia L, Fabregas X, Aguasca A, Duque S, Mallorqui JJ, Lopez-Martinez C (2008) Polarimetric deformation maps retrieval of urban areas using ground-based SAR acquisitions. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, 7–11 July 2008, pp IV-327–IV-330. doi: 10.1109/igarss.2008.4779724
  66. Prati C, Ferretti A, Perissin D (2010) Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J Geodyn 49(3–4):161–170. doi: 10.1016/j.jog.2009.10.011 CrossRefGoogle Scholar
  67. Prokopovich NP (1979) Genetic classification on land subsidence. Paper presented at the international conference on evaluation and prediction of subsidence, Pensacola BeachGoogle Scholar
  68. Pulido-Bosch A, Delgado J, Sola F, Vallejos Á, Vicente F, López-Sánchez JM, Mallorquí JJ (2011) Identification of potential subsidence related to pumping in the Almería basin (SE Spain). Hydrol Process 26(5):731–740. doi: 10.1002/hyp.8181 CrossRefGoogle Scholar
  69. Raucoules D, Colesanti C, Carnec C (2007) Use of SAR interferometry for detecting and assessing ground subsidence. CR Geosci 339(5):289–302. doi: 10.1016/j.crte.2007.02.002 CrossRefGoogle Scholar
  70. Rodríguez-Estrella T, Manteca JL, García C (2000) Subsidencia minera, en relación con sismotectónica, en La Unión (Murcia). Geotemas 1:150–153Google Scholar
  71. Sansosti E, Casu F, Manzo M, Lanari R (2010) Space-borne radar interferometry techniques for the generation of deformation time series: an advanced tool for Earth’s surface displacement analysis. Geophys Res Lett 37(20):L20305. doi: 10.1029/2010gl044379 CrossRefGoogle Scholar
  72. Schmidt DA, Bürgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J Geophys Res 108(B9):2416. doi: 10.1029/2002jb002267 CrossRefGoogle Scholar
  73. Simons M, Rosen PA (2007) 3.12 - Interferometric synthetic aperture radar geodesy. In: Gerald S (ed) Treatise on geophys. Elsevier, Amsterdam, pp 391-446Google Scholar
  74. Sousa JJ, Ruiz AM, Hanssen RF, Bastos L, Gil AJ, Galindo-Zaldívar J, Sanz de Galdeano C (2010) PS-InSAR processing methodologies in the detection of field surface deformation—Study of the Granada basin (Central Betic Cordilleras, southern Spain). J Geodyn 49 (3–4):181–189. doi:http://dx.doi.org/10.1016/j.jog.2009.12.002 Google Scholar
  75. Tomás R, Lopez-Sanchez JM, Delgado J, Vicente F, Cuenca A, Mallorqui JJ, Blanco P, Duque S (2007) DInSAR monitoring of land subsidence in Orihuela City, Spain: comparison with geotechnical data. In: Geoscience and remote sensing symposium, IGARSS 2007. IEEE International, 23–28 July 2007. p 3027–3030Google Scholar
  76. Tomás R, Lopez-Sanchez JM, Delgado J, Mallorquí JJ, Herrera G (2008) DInSAR monitoring of aquifer compaction due to water withdrawal: Vega Baja and Media of the Segura river (SE, Spain) case study. In: Sánchez JM (ed) Drought: causes, effects and predictions. NOVA Publishers, New York, pp 253–276Google Scholar
  77. Tomás R, Herrera G, Delgado J, Lopez-Sanchez JM, Mallorquí JJ, Mulas J (2010a) A ground subsidence study based on DInSAR data: calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng Geol 111(1–4):19–30CrossRefGoogle Scholar
  78. Tomás R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorquí JJ (2010b) Study of the land subsidence in Orihuela City (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 115(1–2):105–121CrossRefGoogle Scholar
  79. Tomás R, Herrera G, Cooksley G, Mulas J (2011) Persistent Scatterer Interferometry subsidence data exploitation using spatial tools: the Vega Media of the Segura River Basin case study. J Hydrol 400(3–4):411–428CrossRefGoogle Scholar
  80. Tomás R, García-Barba J, Cano M, Sanabria MP, Ivorra S, Duro J, Herrera G (2012) Subsidence damage assessment of a gothic church using Differential Interferometry and field data. Struct Health Monit 11:751–762CrossRefGoogle Scholar
  81. Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing: active and passive. Advanced book program. Addison-Wesley, MassachusettsGoogle Scholar
  82. Vieira R, Van Ruymbeke M, Fernández J, Arnoso J, Toro C (1991) The Lanzarote underground laboratory. In: van Ruymbeke M, d’Oreye N (eds) Geodynamical Instrumentation applied to Volcanic Areas, vol 4., Cahiers du Centre Européen de Géodynamique et de SéismologieWalferdange, Grand-Duchy of Luxembourg, pp 71–86Google Scholar
  83. Waltham T (1989) Ground subsidence. Chapman & Hall, New YorkGoogle Scholar
  84. Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: Geoscience and remote sensing symposium, IGARSS ‘03. Proceedings. 2003 IEEE International, 21–25 July 2003 pp 4362–4364 vol.4367. doi: 10.1109/igarss.2003.1295516
  85. Wu Y (2003) Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environ Geol 44(7):811–819. doi: 10.1007/s00254-003-0819-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Tomás
    • 1
    • 2
  • R. Romero
    • 3
  • J. Mulas
    • 2
    • 4
  • J. J. Marturià
    • 5
  • J. J. Mallorquí
    • 6
  • J. M. Lopez-Sanchez
    • 2
    • 7
  • G. Herrera
    • 2
    • 4
  • F. Gutiérrez
    • 8
  • P. J. González
    • 9
  • J. Fernández
    • 10
  • S. Duque
    • 14
  • A. Concha-Dimas
    • 5
  • G. Cocksley
    • 11
  • C. Castañeda
    • 12
  • D. Carrasco
    • 3
  • P. Blanco
    • 13
  1. 1.Departamento de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de AlicanteAlicanteSpain
  2. 2.Unidad Asociada de investigación IGME-UA de movimientos del terreno mediante interferometría radar (UNIRAD)Universidad de AlicanteAlicanteSpain
  3. 3.INDRA EspacioMadridSpain
  4. 4.Geohazards Remote Sensing LaboratoryGrupo de Riesgos Geológicos, Instituto Geológico y Minero de EspañaMadridSpain
  5. 5.Institut Geològic de CatalunyaBarcelonaSpain
  6. 6.Remote Sensing Lab, Departament de Teoria del Senyal I ComunicacionsUniversitat Politècnica de CatalunyaBarcelonaSpain
  7. 7.Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal (DFISTS), Escuela Politécnica SuperiorUniversidad de AlicanteAlicanteSpain
  8. 8.Department of Earth SciencesUniversity of ZaragozaZaragozaSpain
  9. 9.Department of Earth SciencesUniversity of Western Ontario, Biological and Geological Sciences BuildingLondonCanada
  10. 10.Institute of Geosciences (CSIC-UCM), Facultad de Ciencias MatemáticasMadridSpain
  11. 11.Altamira InformationBarcelonaSpain
  12. 12.Estación Experimental de Aula Dei (EEAD-CSIC)ZaragozaSpain
  13. 13.Institut Cartografic de CatalunyaBarcelonaSpain
  14. 14.German Aerospace Center (DLR), Remote Sensing Technology InstituteWeßlingGermany

Personalised recommendations