Environmental Earth Sciences

, Volume 69, Issue 2, pp 507–521 | Cite as

TEODOOR: a distributed geodata infrastructure for terrestrial observation data

  • Ralf Kunkel
  • Jürgen Sorg
  • Robert Eckardt
  • Olaf Kolditz
  • Karsten Rink
  • Harry Vereecken
Special Issue


Within the TERENO initiative, four terrestrial observatories, collecting huge amounts of environmental data, are being set up since 2008. To manage, describe, exchange and publish these data, the distributed Spatial Data Infrastructure TEODOOR ( was created. Each institution responsible for an individual observatory sets up its own local data infrastructure, which may communicate with each other to exchange data and metadata internally or to the public by OGC compliant Web services. The TEODOOR data portal serves as a database node to provide scientists and decision makers with reliable and well-accessible data and data products. Various tools like hierarchical search or Web-GIS functions allow a deeper insight into the different observatories, test sites and sensor networks. Sensor data can be queried and selected for measured parameters, stations and/or time periods, and can be visualized and downloaded according to a shared TERENO data policy. Currently, TEODOOR provides free access to data from more than 500 monitoring stations.


Terrestrial observatories Monitoring Sensor web Spatial data infrastructure OGC web services 



This research was supported by TERENO (Terrestrial Environmental Observatories) We would like to thank the reviewers for their constructive comments.


  1. 52° North (2012) Sensor Web Community. 52° North—initiative for geospatial open source software GmbH. Accessed 30 Aug 2012
  2. Ames DP, Horsburgh J, Goodall J, Whiteaker T, Tarboton D, Maidment D (2009) Introducing the open source CUAHSI Hydrologic Information System Desktop application (HIS Desktop). In: 18th World Imacs Congress and Modsim09 International Congress on modelling and simulation: interfacing modelling and simulation with mathematical and computational sciencesGoogle Scholar
  3. Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D (2012) HydroDesktop: web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ Model Softw 37:146–156. doi: 10.1016/j.envsoft.2012.03.013 CrossRefGoogle Scholar
  4. Band L, Ogden F, Goodrich D, Hooper R, Kane D, Lyons B, McKnight D, Miller N, Williams M, Potter K, Scanlon B, Pielke RA, Sr., Reckhow K (2005) Designing a network of hydrologic observatories as a community service. Report of a workshop held at Logan, UT August 24–25, 2004. CUAHSI. doi: 10.4211/techrpts.200501.tr7
  5. Bogena HR, Schulz K, Vereecken H (2006) TERENO: towards a network of observatories in terrestrial environmental research. Adv Geosci 9:109–114CrossRefGoogle Scholar
  6. Bose R (2002) A conceptual framework for composing and managing scientific data lineage. In: 14th international conference on scientific and statistical database management, Piscataway, NJ, 2002. IEEE Press, pp 15–19Google Scholar
  7. Botts M (2007) OpenGIS sensor model language (SensorML). implementation specification, vol 1.0.0. Open Geospatial Consortium, WaylandGoogle Scholar
  8. Botts M, Percivall G, Reed C, Davidson J (2008) OGC Sensor Web enablement: Overview and high level architecture. In: Nittel S, Labrinidis A, Stefanidis A (eds) Geosensor Networks, vol 4540. Lecture notes in Computer Science. Springer, Berlin, pp 175–190Google Scholar
  9. Bronstert A, Kneis D, Bogena H (2009) Interactions and feedbacks in hydrological change: relevance and possibilities of modelling. Hydrol Wasserbewirtsch 53(5):289–304Google Scholar
  10. Bröring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, Liang S, Lemmens R (2011a) New Gener Sens Web Enablement. Sensor 11(3):2652–2699. doi: 10.3390/s110302652 CrossRefGoogle Scholar
  11. Bröring A, Maué P, Janowicz K, Nüst D, Malewski C (2011b) Semantically-enabled sensor plug and play for the sensor web. Sensors 11(8):7568–7605CrossRefGoogle Scholar
  12. Bröring A, Stasch C, Echterhoff J (2012) Sensor observation service interface standard, vol 2.0. Open Geospatial Consortium, WaylandGoogle Scholar
  13. Burt TP, Howden NJK, Worrall F, Whelan MJ (2008) Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in south-east England. Biogeosci 5:1529–1535CrossRefGoogle Scholar
  14. Chen NC, Di LP, Yu GN, Gong JY, Wei YX (2009) Use of ebRIM-based CSW with sensor observation services for registry and discovery of remote-sensing observations. Comput Geosci 35(2):360–372. doi: 10.1016/j.cageo.2008.08.003 CrossRefGoogle Scholar
  15. Cox S (2010) Geographic information: observations and measurements. OGC abstract specification Topic 20, vol 2.0.0. Open Geospatial Consortium, WaylandGoogle Scholar
  16. Cox S (2011) Observations and measurements. XML implementation, vol 2.0. Open Geospatial Consortium, WaylandGoogle Scholar
  17. Dd Richter, Mobley ML (2009) Monitoring earth’s critical zone. Science 326(5956):1067–1068CrossRefGoogle Scholar
  18. Dransch D, Koethur P, Schulte S, Klemann V, Dobslaw H (2010) Assessing the quality of geoscientific simulation models with visual analytics methods—a design study. Int J Geogr Inf Sci 24(10):1459–1479. doi: 10.1080/13658816.2010.510800 CrossRefGoogle Scholar
  19. Echterhoff J, Everding T (2011) OGC event service. Review and current state. Open Geospatial Consortium, WaylandGoogle Scholar
  20. ECJRC (2009) INSPIRE metadata implementing rules: technical guidelines based on EN ISO 19115 and EN ISO 19119. European Commission Joint Research CentreGoogle Scholar
  21. FGDC (2000) Content standard for digital geospatial metadata workbook. Federal Geographic Data Committee, RestonGoogle Scholar
  22. Gräbe A, Rödiger T, Rink K, Fischer T, Sun F, Wang W, Siebert C, Kolditz O, Grathwohl P (2012) Numerical analysis of the groundwater regime in the western Dead Sea Escarpment, Israel+West Bank.) Catchments as reactors: A comprehensive approach for water fluxes and solute turn-over. Environmental Earth Science (to be submitted)Google Scholar
  23. Gray J, Liu D, Nieto-Santisteban TM, Szalay A, DeWitt DJ, Heber G (2005) Scientific data management in the coming decade. SIGMOD Rec 34(4):34–41. doi: 10.1145/1107499.1107503 CrossRefGoogle Scholar
  24. Horsburgh JS, Tarboton DG, Maidment DR, Zaslavsky I (2008) A relational model for environmental and water resources data. Water Resour Res 44(5). doi: 10.1029/2007wr006392
  25. Houbie Fdr, Skivée F, Jirka S (2010) OGC Catalogue services specification 2.0. Extension package for ebRIM application profile: SensorML, vol 0.3.0. Open Geospatial Consortium, WaylandGoogle Scholar
  26. ISO (2003) ISO/DIS 19115: Geographic information—metadata. vol ISO/DIS 19115. International Organization for StandardizationGoogle Scholar
  27. ISO (2009) Information and documentation. The Dublin core metadata element set. ISO, DublinGoogle Scholar
  28. Jirka S, Broring A, Stasch C (2009) Discovery mechanisms for the sensor web. Sensors 9(4):2661–2681. doi: 10.3390/s90402661 CrossRefGoogle Scholar
  29. Jirka S, Bröring A, Kjeld P, Maidens J, Wytzisk A (2012) A Lightweight approach for the sensor observation service to share environmental data across Europe. Trans GIS 16(3):293–312CrossRefGoogle Scholar
  30. Keller M, Schimel DS, Hangrove WW, Hoffman FM (2008) A continental strategy for the National Ecological Observatory Network. Frontiers in Ecology and the Environment 6:282–284Google Scholar
  31. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao H, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu N, Xie M, Xu W, Zehner B (2012a) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. doi: 10.1007/s12665-012-1546-x
  32. Kolditz O, Rink K, Shao H, Kalbacher T, Kunkel R, Zacharias S, Dietrich P (2012b) Data modelling platforms in environmental Earth sciences. Environ Earth Sci 66(4):1279–1284. doi: 10.1007/s12665-012-1661-8 CrossRefGoogle Scholar
  33. kZen Labs (2012) Buddata ebXML Registry/Repository. Accessed 30 Aug 2012
  34. lat/lon (2009) deegree Web Processing Service v2.5. Lat/lon GmbH, Bonn; Department of Geography Bonn University, Bonn, GermanyGoogle Scholar
  35. Lesage N (2007) OGC Cataloguing of ISO Metadata (CIM). Using the ebRIM profile of CS-W, vol 0.1.7. Open Geospatial Consortium, WaylandGoogle Scholar
  36. Lin H (2003) Hydropedology: bridging disciplines, scales, and data. Vadoze Zone J 2:1–11Google Scholar
  37. Lin H (2010) Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrol Earth Syst Sci 14:25–45CrossRefGoogle Scholar
  38. Mauder M, Cuntz M, Druee C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric Meteorol 169:122–135. doi: 10.1016/j.agrformet.2012.09.006 CrossRefGoogle Scholar
  39. McDonnell JJ, Sivapalan M, Vachè K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J, Weiler M (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res 43(7):W07301. doi: 10.1029/2006wr005467 CrossRefGoogle Scholar
  40. Michener WK, Brunt JW, Helly JJ, Kirchner TB, Stafford SG (1997) Nongeospatial metadata for the ecological sciences. Ecol Appl 7(1):330–342. doi: 10.2307/2269427 CrossRefGoogle Scholar
  41. Mohammadi H, Rajabifard A (2009) Multi-source spatial data integration within the context of SDI initiatives. International Journal of Spatial Data Infrastructures Reseach 4:18Google Scholar
  42. Montgomery JL, Harmon T, Haas CN, Hooper R, Clesceri NL, Graham W, Kaiser W, Sanderson A, Minsker B, Schnoor J, Brezonik Patrick (2007) The WATERS Network: an integrated environmental observatory network for water research. Environ Sci Technol 41(19):6642–6647. doi: 10.1021/es072618f CrossRefGoogle Scholar
  43. Na A, Priest M (2007) Sensor Observation Service. vol 1.0. Open Geospatial Consortium Inc., WaylandGoogle Scholar
  44. Nebert DD (2005) Developing spatial data infrastructures: the SDI cookbookGoogle Scholar
  45. Nebert D, Whiteside A, Vretanos P (2007) OpenGIS Catalogue Services Specification, vol 2.0.2, Corrigendum 2 Release. Open Geospatial Consortium, WaylandGoogle Scholar
  46. Nisbet E (2007) Earth monitoring: cinderella science. Nature 450:789–790CrossRefGoogle Scholar
  47. Nogueras-Iso J, Zarazaga-Soria FJ, Béjar R, Álvarez PJ, Muro-Medrano PR (2005) OGC catalog services: a key element for the development of Spatial Data Infrastructures. Comput Geosci 31(2):199–209. doi: 10.1016/j.cageo.2004.05.015 CrossRefGoogle Scholar
  48. OASIS (2002) OASIS/ebXML Registry Information Model, vol 2.0. The Organization for the Advancement of Structured Information 1640 Standards [OASIS]Google Scholar
  49. OGC (2012) OGC standards and supporting documents. Open Geospatial Consortium. Accessed 20 Aug 2012
  50. OSGeo (2012a) GeoNetwork Opensource. Open Source Geospatial Foundation. Accessed 02 Oct 2012
  51. OSGeo (2012b) Geoserver. Open Source Geospatial Foundation. Accessed 02 Oct 2012
  52. Parr TW, Sier ARJ, Battarbee RW, Mackay A, Burgess J (2003) Detecting environmental change: science and society, Äîperspectives on long-term research and monitoring in the 21st century. Sci Total Environ 310:1–8. doi: 10.1016/s0048-9697(03)00257-2 CrossRefGoogle Scholar
  53. Philips A, Williamson I (1999) Spatial data infrastructure concepts. Aust Surv 44(1):8Google Scholar
  54. Plone Foundation (2004) Plone. Accessed 30 Aug 2012
  55. Reid WV, Bréchignac C, Tseh Lee Y (2009) Earth system research priorities. Science 325(5938):245CrossRefGoogle Scholar
  56. Rink K, Fischer T, Selle B, Kolditz O (2012a) A data exploration framework for validation and setup of hydrological models. Environ Earth Sci. doi: 10.1007/s12665-012-2030-3
  57. Rink K, Kalbacher T, Kolditz O (2012b) Visual data exploration for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi: 10.1007/s12665-011-1230-6 CrossRefGoogle Scholar
  58. Selle B, Rink K, Kolditz O (2012) Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in SW Germany. Environ Earth Sci (submitted)Google Scholar
  59. Simonis I, Echterhoff J (2011) OGC Sensor Planning Service Implementation Standard. vol 2.0. Open Geospatial Consortium, WaylandGoogle Scholar
  60. Simonis I, Wytzisk A (2003) Web Notification Service. vol 0.1.0. Open Geospatial Consortium, WaylandGoogle Scholar
  61. Sorg J (2012) Entwurf. Implementierung und Anwendung eines OGC-konformen sensor observation service für flächenbezogene rasterzeitreihendaten. Master, Fernuniversität Hagen, HagenGoogle Scholar
  62. Sun F, Shao H (2012) Groundwater deterioration in Nankou, a suburban area of Beijing: data assessment and remediation scenarios. Environ Earth Sci. doi: 10.1007/s12665-012-1600-8 Google Scholar
  63. Tarboton DG, Horsburgh JS, Maidment DR, Whiteaker T, Zaslavsky I, Piasecki M, Goodall J, Valentine D, Whitenack T (2009) Development of a Community Hydrologic Information System. In: 18th World Imacs Congress and Modsim09 International Congress on modelling and simulation: interfacing modelling and simulation with mathematical and computational sciencesGoogle Scholar
  64. TERENO (2010) TERENO Data policy. Data policy.pdf/. Accessed 20 Aug 2012
  65. Teutsch G, Krüger E (2010) Water science alliance—research priority areas.
  66. Theisselmann F, Dransch D, Haubrock S (2009) Service-oriented Architecture for Environmental Modelling—The Case of a Distributed Dike Breach Information System. In: 18th World Imacs Congress and Modsim09 International Congress on modelling and simulation: interfacing modelling and simulation with mathematical and computational sciencesGoogle Scholar
  67. Tomasic A, Simon E (1997) Improving access to environmental data using context information. SIGMOD Rec 26(1):11–15. doi: 10.1145/248603.248606 CrossRefGoogle Scholar
  68. Wollschläger U, Zacharias S (2012) The Bode Catchment as part of the TERENO Harz/Central German Lowland Observatory: A platform for inte-grated hydrological research.Bode observatory. Environ Earth Sci (submitted)Google Scholar
  69. Zacharias S, Dietrich P, Vogel H-J, Seppelt R, Borchardt D, Klotz S, Messner F, Teutsch G, Helmholtz Centre Environmental R-U (2008) Tereno—methodological approach for the implementation of a terrestrial obsevatory for environmental research in Central Germany. Consoil 2008: Theme B—Functions and Values of Soil-Water Systems; Understanding of ProcessesGoogle Scholar
  70. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuss R, Puetz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973. doi: 10.2136/vzj2010.0139 CrossRefGoogle Scholar
  71. Zoback ML (2001) Grand challenges in earth and environmental sciences: sciences, stewardship, and service for the twenty first century. GSA Today 12:41–47Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Kunkel
    • 1
  • Jürgen Sorg
    • 1
  • Robert Eckardt
    • 2
  • Olaf Kolditz
    • 2
  • Karsten Rink
    • 2
  • Harry Vereecken
    • 1
  1. 1.Research Centre JülichInstitute for Bio and Geosciences-Agrosphere (IBG-3)JülichGermany
  2. 2.Department of Environmental InformaticsHelmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations