Advertisement

Environmental Earth Sciences

, Volume 69, Issue 2, pp 605–615 | Cite as

Application of the water balance model J2000 to estimate groundwater recharge in a semi-arid environment: a case study in the Zarqa River catchment, NW-Jordan

  • Stephan SchulzEmail author
  • Christian Siebert
  • Tino Rödiger
  • Marwan M. Al-Raggad
  • Ralf Merz
Special Issue

Abstract

Pollution and overexploitation of scarce groundwater resources is a serious problem in the Zarqa River catchment, Jordan. To estimate this resource’s potential, the amount and spatial distribution of groundwater recharge was calculated by applying the hydrological model J2000. The simulation period is composed of daily values gathered over a 30-year period (July 1977 to June 2007). The figure finally obtained for estimated groundwater recharge of the Zarqa River catchment is 105 × 106 m3 per year (21 mm a−1). This is 19 % higher than the value previously assumed to be correct by most Jordanian authorities. The average ratio of precipitation to groundwater recharge is 9.5 %. To directly validate modelled groundwater recharge, two independent methods were applied in spring catchments: (1) alteration of stable isotope signatures (δ18O, δ2H) between precipitation and groundwater and (2) the chloride mass balance method. Recharge rates determined by isotopic investigations are 25 % higher, and recharge rates determined by chloride mass balance are 9 % higher than the modelled results for the corresponding headwater catchments. This suggests a reasonably modelled safe yield estimation of groundwater resources.

Keywords

Zarqa River Jordan Groundwater recharge J2000 model Calibration 

Notes

Acknowledgments

The authors thank the German Federal Ministry of Education and Research for funding the SMART II project (FKZ 02-WM 801). Furthermore, this work was kindly supported by Helmholtz Impulse and Networking Fund through Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) (Bissinger and Kolditz 2008). Finally, we thank E. Pohl and T. Mannschatz for valuable discussions, and M. Alqadi, S. Kraushaar and Prof. E. Salameh for help and expertise during the field work.

Supplementary material

12665_2013_2342_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (PDF 4107 kb)

References

  1. Al Mahamid J (2005) Integration of water resources of the upper aquifer in Amman-Zarqa Basin based on mathematical modelling and GIS, Jordan. Dissertation, Technical University of FreibergGoogle Scholar
  2. Al-Abed N, Al-Sharif M (2007) Hydrological modelling of Zarqa River Basin—Jordan using the hydrological simulation program—FORTRAN (HSPF) model. Water Resour Manag 22:1203–1220. doi: 10.1007/s11269-007-9221-9 CrossRefGoogle Scholar
  3. Allison GB, Barnes CJ, Hughes MW, Leaney FWJ (1984) Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Proceedings of isotope hydrology 1983, IAEA Vienna. pp 105–123Google Scholar
  4. Al-Omari A, Al-Quraan S, Al-Salihi A, Abdulla F (2009) A water management support system for Amman Zarqa Basin in Jordan. Water Resour Manag 23:3165–3189. doi: 10.1007/s11269-009-9428-z CrossRefGoogle Scholar
  5. Bender F (1968) Geology of Jordan. Gebrüder Borntraeger, BerlinGoogle Scholar
  6. Bissinger V, Kolditz O (2008) Helmholtz interdisciplinary graduate school for environmental research (HIGRADE). GAIA 1:71–73Google Scholar
  7. Breuer L, Eckhardt K, Frede HG (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293. doi: 10.1016/S0304-3800(03)00274-6 CrossRefGoogle Scholar
  8. Clarke I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  9. Department of Statistics, DOS (2012) Statistical Yearbook 2011. Department of Statistics. http://www.dos.gov.jo/dos_home_e/main/ehsaat/alsokan/2011/2-2.pdf. Accessed 28 July 2007
  10. Eltaif NI, Gharaibeh MA, Al-Zaitawi F, Alhamd MN (2010) Approximation of rainfall erosivity factors in North Jordan. Pedosphere 20:711–717. doi: 10.1016/S1002-0160(10)60061-6 CrossRefGoogle Scholar
  11. Flügel WA (1995) Delineating hydrological response units (HRU’s) by GIS analysis for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol Process 9:423–436. doi: 10.1002/hyp.3360090313 CrossRefGoogle Scholar
  12. Gehre M, Hoefling R, Kowski P, Strauch G (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal Chem 68:4414–4417. doi: 10.1021/ac9606766 CrossRefGoogle Scholar
  13. Gräbe A, Rödiger T, Rink K, Fischer T, Sun F, Wang W, Siebert C, Kolditz O (2013) Numerical analysis of the groundwater regime in the western Dead Sea Escarpment, Israel + West Bank. Environ Earth Sci 69(2):351. doi: 10.1007/s12665-012-1795-8 Google Scholar
  14. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91. doi: 10.1016/j.jhydrol.2009.08.003 CrossRefGoogle Scholar
  15. Hammouri N, El-Naqa A (2007) Drought Assessment using GIS and remote sensing in Amman-Zarqa Basin, Jordan. Jordan J Civ Eng 1:142–152Google Scholar
  16. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621CrossRefGoogle Scholar
  17. Hobler M, Margane A, Saffarini I (1994) Structural Features of the main Hydrogeological Units in Northern Jordan. Water Authority of Jordan (WAJ) and Federal Institute for Geosciences and Natural Resources (BGR). Report Vol. 3. In: Groundwater Resources of Northern JordanGoogle Scholar
  18. Hobler M, Margane A, Almomani M, Subah A (2001) Contributions to the Hydrogeology of Northern Jordan. Ministry of Water and Irrigation (MWI) and Federal Institute for Geosciences and Natural Resources (BGR). Report Vol. 4. In: Groundwater Resources of Northern JordanGoogle Scholar
  19. Hollick M, Lyne V (1979) Stochastic time-variable rainfall-runoff modelling. Proceedings of Hydrology and Water Resources Symposium 89–92. Pearth, AustraliaGoogle Scholar
  20. International Atomic Energy Agency/World Meteorological Organization (IAEA/WMO) (2006) Global Network of Isotopes in Precipitation—The GNIP Database. http://www.iaea.org/water. Accessed 20 July 2011
  21. Jordan Valley Authority (JVA) (2004) The third Country Training Programme for Water Resources Management. http://www.jica.go.jp/iraq/english/activities/pdf/training06_01.pdf. Accessed 10 June 2011
  22. Kinzelbach W, Aeschbach W, Alberich C, Goni IB, Beyerle U, Brunner P, Chiang WH, Rueedi J, Zoellmann K (2002) A survey of methods for groundwater recharge in arid and semi-arid regions. Early warning and assessment Report Series, UNEP/DEWA/RS.02-2. United Nations Environment Programme, Nairobi, KenyaGoogle Scholar
  23. Krause P (2001) Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in großen Flusseinzugsgebieten. Schriften des Forschungszentrums Jülich: Reihe Umwelt/Environment 29, JülichGoogle Scholar
  24. Krause P (2002) Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys Chem Earth 27:663–673. doi: 10.1016/S1474-7065(02)00051-7 CrossRefGoogle Scholar
  25. Krause P, Kralisch S (2005) JAMS—The hydrological modelling system J2000—knowledge core for JAMS. In: Proceedings of MODSIM 2005—International Congress on Modelling and Simulation. pp 676–682Google Scholar
  26. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi: 10.5194/adgeo-5-89-2005 CrossRefGoogle Scholar
  27. Land Processes Distributed Active Archive Center (LP DAAC) (2011) ASTER GDEM –USGS/Earth Resources Observation and Science (EROS) Center. https://lpdaac.usgs.gov/get_data. Accessed 12 May 2011
  28. Landon J (1991) Booker tropical soil manual—a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman, LondonGoogle Scholar
  29. Makhamreh Z, Almanaseh N (2011) Analyzing the State and Pattern of Urban Growth and City Planning in Amman Using Satellite Images and GIS. Eur J Soc Sci 24:252–264Google Scholar
  30. Margane A, Almomany M (1995) Groundwater Abstraction of Northern Jordan. Water Authority of Jordan (WAJ) and Federal Institute for Geosciences and Natural Resources (BGR). Report Vol. 2 Part 1. In: Groundwater Resources of Northern JordanGoogle Scholar
  31. Margane A, Hobler M, Almomani M, Subah A (2002) Contributions to the Hydrogeology of Northern and Central Jordan. Federal Institute for Geosciences and Natural Resources (BGR). In: Geologisches Jahrbuch, Reihe C, Heft 68, HannoverGoogle Scholar
  32. Ministry of Agriculture, MOA (1994) The Soils of Jordan, Level 2 Semi Detailed Studies. Hunting Technical Services LTD in association with Soil Survey and Land Research Centre. Report Vol. 2. In: National Soil Map and Land Use ProjectGoogle Scholar
  33. Ministry of Water and Irrigation (MWI) (2000) Outline Hydrogeology of the Amman-Zarqa Basin. United States Agency for International Development (USAID) and Associates in Rural Development Inc. (ARD). Report. In: Water Resource Policy Support—Groundwater Management ComponentGoogle Scholar
  34. Mrayyan B, Hussein I (2004) Integrated Assessment of the Control of Wastewater Pollution in Zarqa Governate, Jordan. Int J Environ Pollut 22:580–596CrossRefGoogle Scholar
  35. Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26:1465–1473. doi: 10.1029/WR026i007p01465 CrossRefGoogle Scholar
  36. Parker DH (1969) Investigations of the Sandstone Aquifers of East Jordan—The Hydrogeology of the Mesozoic-Cainozoic Aquifers of the Western Highlands and Plateau of East Jordan. Food and Agriculture Organization (FAO). Report Vol. 2 Part 1. In: Investigation of the Sandstone Aquifers of East JordanGoogle Scholar
  37. Reynolds WD, Elrick DE, Youngs EG, Amoozegar A, Booltink HWG, Bouma J (2002) Saturated and field-saturated water flow parameters. In: Dane JH, Topp C (eds) Methods of soil analysis, Part 4—physical methods. Soil Science Society of America, Madison, pp 797–878Google Scholar
  38. Salameh E (2001) Sources of water salinities in the Jordan Valley Area/Jordan. Acta Hydrochim Hydrobiol 29:329–362. doi: 10.1002/1521-401X(200112)29:6/7<329::AID-AHEH329>3.0.CO;2-6
  39. Salameh E (2008) Over-exploitation of groundwater resources and their environmental and socio-economic implications: the case of Jordan. Water Int 33:55–68. doi: 10.1080/02508060801927663 CrossRefGoogle Scholar
  40. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi: 10.1002/hyp.6335 CrossRefGoogle Scholar
  41. Shahin M (2007) Water Resources and Hydrometeorology of the Arab Region. Springer, DordrechtGoogle Scholar
  42. Steinocher K (1997) Texturanalyse zur Detektion von Siedlungsgebieten in hochauflösenden panchromatischen Satellitenbilddaten. In: Proceedings of AGIT IX Salzburg 1997. pp 143–152Google Scholar
  43. Ta’any RA, Tahboub A, Saffarini G (2008) Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman–Zarqa basin, Jordan: a case study. Environ Geol 57:525–535. doi: 10.1007/s00254-008-1322-0 CrossRefGoogle Scholar
  44. Talozi SA (2007) Water and security in Jordan. In: Lipchin C, Pallant E, Saranga D, Amster A (eds) Integrated water resources management and security in the Middle East. Springer, Dordrecht, pp 73–98CrossRefGoogle Scholar
  45. Water Authority of Jordan (WAJ) (1989) Amman Zarqa Basin Water Resources Study—North Jordan Water Resources Investigation Project. (Unpublished Report)Google Scholar
  46. Water Authority of Jordan (WAJ) (2011) Precipitation, Climate and Runoff Datasets from the Water Information System. (Unpublished data)Google Scholar
  47. Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468. doi: 10.1111/j.1745-6584.1995.tb00302.x CrossRefGoogle Scholar
  48. Ziadat FM, Taimeh AY, Hattar BI (2010) Variation of soil physical properties and moisture content along toposequences in the arid to semiarid area. Arid Land Res Manag 24:81–97. doi: 10.1080/15324981003635396 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephan Schulz
    • 1
    Email author
  • Christian Siebert
    • 1
  • Tino Rödiger
    • 1
  • Marwan M. Al-Raggad
    • 2
  • Ralf Merz
    • 1
  1. 1.Department Catchment HydrologyHelmholtz Centre for Environmental Research—UFZHalle/SaaleGermany
  2. 2.University of Jordan, Water, Energy and Environment Center (WEEC)AmmanJordan

Personalised recommendations