Advertisement

Environmental Earth Sciences

, Volume 70, Issue 6, pp 2767–2784 | Cite as

Effect of the dilution process on the attenuation of contaminants in aquifers

  • Manuela LasagnaEmail author
  • Domenico Antonio De Luca
  • Laura Debernardi
  • Paolo Clemente
Original Article

Abstract

This paper discusses the effects of the dilution process on levels of aquifer contamination attenuation, developing analytical equations for application in theoretical and practical cases. The key finding is that, in aquifers, the dilution process causes a reduction of the contaminant concentration. Analytical equations for the assessment of the contaminant attenuation capacity, by means of the dilution process in an aquifer, are put forward. In particular, the attenuation of the contaminant concentration in an aquifer, and thus the dilution, is described by the volumetric flow rate per unit width perpendicular to the flow direction (q u). Moreover, a classification of q u was developed, considering six classes of attenuation capacity due to dilution. For the equations validation, nitrate contamination attenuation due to dilution was analysed in two sample areas in Piedmont (North-West Italy). The results confirmed the hypothesis, evidencing high nitrate concentrations in areas with low q u values, connected to low dilution rate of the contaminant in the groundwater; vice versa, low nitrate concentrations were evidenced in areas with high q u values, due to a high nitrate dilution rate.

Keywords

Contaminant attenuation Dilution Groundwater resources Nitrate Italy 

Abbreviations

b

Aquifer thickness (m)

Cae

Contaminant concentration in the cell input (mg/l)

Ci

Contaminant concentration in the infiltration water (mg/l)

Cu

Expected contaminant concentration in the cell output (mg/l)

Cw

Actual nitrate concentration in the groundwater (mg/l)

i

Hydraulic gradient (dimensionless)

Ie

Infiltration rate (m/year)

k

Hydraulic conductivity (m/year)

L

Cell length (m)

P

Cell width (m)

Q

Volumetric flow rate (m3/s)

Qae

Groundwater flow rate used for cell input (m3/year)

Qi

Infiltration flow rate (m3/year)

Qu

Groundwater flow rate in cell output (m3/year)

qu

Volumetric flow rate per unit width, perpendicular to the flow direction (m2/s)

S

Area of the cell (m2)

T

Transmissivity (m2/s)

References

  1. Aller L, Bennet T, Lehr JH, Petty RJ, Hacket G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. NWWA/EPA Ser. EPA 600/287035Google Scholar
  2. American Petroleum Institute (1996) Estimation of Infiltration and Recharge for Environmental Site Assesment. Daniel B. Stephens & Associates, Inc., API Publication 4643Google Scholar
  3. Atxotegi U, Iqbal MZ, Czarnetzki AC (2003) A preliminary assessment of nitrate degradation in simulated soil environments. Environ Geol 45:161–170CrossRefGoogle Scholar
  4. Bekesi G, McConchie J (2002) The use of aquifer-media characteristics to model vulnerability to contamination, Manawatu region, New Zealand. Hydrogeol J 10:322–331CrossRefGoogle Scholar
  5. Biancotti A, Bellardone G, Bovo S, Cagnazzi B, Giacomelli L, Marchisio C (1998). Distribuzione regionale di piogge e temperature. Collana Studi Climat. Piemonte 1:80, 21 tabb., 30 ff. (CD-Rom)Google Scholar
  6. Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrol Process 13:1451–1463CrossRefGoogle Scholar
  7. Buss SR, Rivett MO, Morgan P, Bemment CD (2005) Attenuation of nitrate in the subsurface environments. Environment Agency Science Group report SC030155/2Google Scholar
  8. Carraro F (ed.) (1996) Revisione del Villafranchiano nell’area-tipo di Villafranca d’Asti. Il Quaternario 9(1), p 119Google Scholar
  9. Clay DE, Zheng Z, Liu Z, Clay SA, Trooien TP (2004) Bromide and nitrate movement through undisturbed soil columns. J Environ Qual 33:338–342CrossRefGoogle Scholar
  10. De Luca DA, Lasagna M (2004) Use of the dilution attenuation factor in the groundwater contamination evaluation, with particular reference to nitrate pollution. 32nd Int. Geol. Congr., Florence, Italy, 20–28 August 2004, Abs. vol., pt. 1, abs. 140–26Google Scholar
  11. De Luca DA, Lasagna M (2005) Aquifer role in reducing nitrate contamination by means of the dilution process. Proceedings of the 6th International Conference “Sharing a common vision of our water resources”, Menton, France, 7–10 September 2005, Paper EWRA066cGoogle Scholar
  12. De Luca DA, Lasagna M, Morelli di Popolo e Ticineto A (2007) Installation of a vertical slurry wall around an Italian quarry lake: complications arising and simulation of the effects on groundwater flow. Environ Geol 53:177–189CrossRefGoogle Scholar
  13. De Vecchi Pellati, Pesce (1986) Censimento consorzi irrigui. Censimento degli organismi gestori di irrigazioni collettive in piemonte (pianura e collina). EsaGoogle Scholar
  14. Debernardi L, De Luca DA, Lasagna M (2005) Natural denitrification in groundwater in the western sector of the Po Plain (northern Italy). Proceedings of Aquifer vulnerability and Risk, 2nd International Workshop and 4th National Congress on the Protection and Management of Groundwater—Reggia di Colorno (PR), Italy, 21–23 September 2005, Paper ID 176, p 27Google Scholar
  15. Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558CrossRefGoogle Scholar
  16. Enwright N, Hudak PF (2009) Spatial distribution of nitrate and related factors in the High Plains Aquifer, Texas. Environ Geol 58:1541–1548CrossRefGoogle Scholar
  17. Evans TA, Maidment DR (1995) A spatial and statistical assessment of the vulnerability of Texas groundwater to nitrate contamination. CRWR Online Report 95-4. Web. 01 Aug. 2012. http://www.crwr.utexas.edu/gis/gishydro00/library/evans/rep95_4.htm
  18. Farooq SH, Chandrasekharam D, Norra S, Berner Z, Eiche E, Thambidurai P, Stuben D (2011) Temporal variations in arsenic concentration in the groundwater of Murshidabad District, West Bengal, India. Environ Earth Sci 62:223–232CrossRefGoogle Scholar
  19. Firestone MK (1982) Biological denitrification: in Nitrogen in Agricultural Soils. Stevenson, F.J. editor, American Society of Agronomy, Madison, WI. pp 289-326Google Scholar
  20. Foster S, Hirata R (1988) Groundwater pollution risk assessment. World Health Organization. Pan American Health Organization. Pan American Center for Sanitary Engineering and Environmental Sciences (CEPIS). Lima, PerùGoogle Scholar
  21. Foster S, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities and environment agencies. World Bank Publication, WashingtonCrossRefGoogle Scholar
  22. GAO (General Accounting Office) (1992) Groundwater protection: validity and feasibility of EPA’s differential protection strategy. (GAO/PEMD-93-6). General Accounting Office, WashingtonGoogle Scholar
  23. Grignani C, Sacco D (2002) Realizzazione di siti di monitoraggio finalizzati alla valutazione dei flussi di nutrienti nel terreno. Attività: quantificazione del carico di nutrienti di origine agricola—relazione intermedia del progetto e finale dell’attività (dicembre 2002). Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio—Università degli Studi di Torino (unpublished data)Google Scholar
  24. Grignani C, Sacco D (2005) Elaborazione dati e modellistica per l’individuazione delle zone vulnerabili da nitrati e da fitofarmaci e per la definizione e attuazione dei programmi d’azione. Relazione finale. Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio—Università degli Studi di Torino (unpublished data)Google Scholar
  25. Irace A, Clemente P, Piana F, De Luca DA, Polino R, Violanti D, Mosca P, Trenkwalder S, Natalicchio M, Ossella L, Governa M, Petricig M (2009) Geologia e Idrostratigrafia profonda della Pianura Padana occidentale. Nuova Lito, Firenze 111 ppGoogle Scholar
  26. Irace A, Clemente P, Piana F, De Luca DA, Polino R, Violanti D, Mosca P, Trenkwalder S, Natalicchio M, Ossella L, Governa M, Petricig M (2010) Hydrostratigraphy of the late Messinian-Quaternary basins in the southern Piedmont (northwestern Italy). Mem. Descr. Carta Geol. d’It. XC. pp 133–152Google Scholar
  27. Katou H, Clothier BE, Green SR (1996) Anion transport involving competitive adsorption during transient water flow in an Andisol. Soil Sci Soc Am J 60:1368–1375CrossRefGoogle Scholar
  28. Killpack SC, Buchholz D (1993) WQ257 Nitrogen in the Environment: Ammonia Volatilization | University of Missouri Extension. University of Missouri Extension Home. Department of Agronomy. Web. 01 Aug. 2012. http://extension.missouri.edu/publications/DisplayPrinterFriendlyPub.aspx?P=WQ257
  29. Kitanidis PK (1994) The concept of the dilution index. Water Resour Res 30(7):2011–2026CrossRefGoogle Scholar
  30. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resourc Res 28:1657–1668CrossRefGoogle Scholar
  31. Lasagna M (2006) I nitrati nelle acque sotterranee della pianura piemontese: distribuzione, origine, attenuazione e condizionamenti idrogeologici. ‘‘Nitrate in Piemonte plain groundwater: distribution, origin, attenuation and hydrogeological conditioning’’. PhD Thesis, Earth Science Department, University of Torino, ItalyGoogle Scholar
  32. Lasagna M, De Luca DA (2006) Groundwater multi-level sampling methods in a single piezometer: comparisons and applications to nitrate contamination. Proceedings of International Congress “Integrated Water Resources Management and Challenges of the Sustainable Development” Marrakech, Morocco, 23–25 May 2006, p 7Google Scholar
  33. Lasagna M, De Luca DA (2008) Contaminazione da nitrati nelle acque sotterranee della pianura torinese-cuneese: quadro generale e ruolo dei corsi d’acqua. Giornale di Geologia Applicata 8(2008):75–87Google Scholar
  34. Lasagna M, Debernardi L, De Luca DA (2009) Proposta di una metodologia per la valutazione della vulnerabilità specifica di un acquifero ai nitrati in funzione delle caratteristiche idrodinamiche. EngHydroEnv Geol 12:79–93Google Scholar
  35. Mishima Y, Takada M, Kitagawa R (2011) Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management. Environ Earth Sci 63:571–580CrossRefGoogle Scholar
  36. Mosca P. (2006) Neogene basin evolution in the Western Po Plain (NW Italy). PhD Thesis, Vrije Universiteit Amsterdam.  pp 190Google Scholar
  37. Nishikiori T, Takamatsu T, Kohzu A, Nakajima Y, Watanabe M (2012) Distribution of nitrate in groundwater affected by the presence of an aquitard at an agricultural area in Chiba, Japan. Environ Earth Sci 67:1531–1545CrossRefGoogle Scholar
  38. Pieri M, Groppi P (1981) Subsurface Geological Structure of the Po Plain, Italy. Quad. CNR. 414, Progetto finalizzato Geodinamica, Roma. p 13Google Scholar
  39. Pratt PF, Lund LJ, Rible JM (1978) An approach to measuring leaching of nitrate from freely drained irrigated field. In: Nitrogen Environmental, vol. 1. Academic Press, London, New YorkGoogle Scholar
  40. Ribeiro L (2005) Desenvolvimento e aplicação de um novo índice de susceptibilidade dos aquíferos à contaminação de origem agrícola—in Actas do 7° Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa, ed. CDROM, APRH, Évora, PortugalGoogle Scholar
  41. Servizio Geologico d’Italia (1931) Carta Geologica d’Italia alla scala 1:100.000—Foglio n. 80 Cuneo, I edizione, RomaGoogle Scholar
  42. Servizio Geologico d’Italia (1970) Carta Geologica d’Italia alla scala 1:100.000—Foglio n.70 Alessandria, II edizione, RomaGoogle Scholar
  43. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99CrossRefGoogle Scholar
  44. Stigter TY, Carvalho Dill AMM, Ribiero L (2011) Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater. Environ Sci Technol 45(20):8674–8682CrossRefGoogle Scholar
  45. Thomasson AJ, Bouma J, Leith H (eds.) (1991) Soil and Groundwater Research Report. II. Nitrate in Soils. EUR13501 Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  46. Tiedje JM, Sextone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antoine van Leeuwenhoek 48:569–583CrossRefGoogle Scholar
  47. Todd DK (1980) Groundwater hydrology. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manuela Lasagna
    • 1
    Email author
  • Domenico Antonio De Luca
    • 1
  • Laura Debernardi
    • 1
  • Paolo Clemente
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversità di TorinoTurinItaly

Personalised recommendations