Advertisement

Environmental Earth Sciences

, Volume 69, Issue 2, pp 679–694 | Cite as

The Berchtesgaden National Park (Bavaria, Germany): a platform for interdisciplinary catchment research

  • T. Marke
  • U. Strasser
  • G. Kraller
  • M. Warscher
  • H. Kunstmann
  • H. Franz
  • M. Vogel
Special Issue

Abstract

The Berchtesgaden National Park (Bavaria, Germany), a study site of the UNESCO Man and the Biosphere program in the catchment of Berchtesgadener Ache, is introduced as a platform for interdisciplinary research. As the investigation of how human activities affect the natural resources in the park area, which has been defined a main aim of the program, naturally requires expertise from different scientific fields, interdisciplinary research has been fostered in the national park plan since the very beginning of the Man and the Biosphere program in 1981. To analyze the complex interactions and mutual dependencies between socio-economic and natural systems, a variety of monitoring programs have been initialized in different disciplines (e.g. climate sciences, zoology, botany) that are addressed in this paper. As a result of these research efforts, the park offers a profound data basis to be used in future studies (e.g. land cover classifications, maps of geological and soil conditions). Detailed information is provided on a climate monitoring network that has been installed in the park starting in the year 1993. The network has been continuously extended over the years and now provides extraordinary comprehensive information on meteorological conditions in the park, setting the basis for current as well as for potential future climate-related studies. A special characteristic of the station network is the fact that it covers a large range of elevations from 600 m a.s.l in the valleys to 2,600 m a.s.l in the summit regions and is therefore able to capture altitudinal gradients in meteorological variables as typical for Alpine regions. Due to the large number of stations in high elevations (15 stations are in elevations higher than 1,500 m a.s.l) the network provides information on the complex hydrometeorological conditions in summit regions which are often insufficiently represented in observation networks due to the increased costs for maintenance of climate stations in these locations. Beside the various monitoring programs, a variety of numerical models have been (further) developed for application in the park area that make extensive use of the different data collected and therefore largely benefit from the comprehensive data pool. The potential and necessity of the climate monitoring network for modelling studies is demonstrated by utilizing the meteorological recordings in the framework of a hydrometeorological simulation experiment. Further examples of environmental modelling efforts are shortly described together with preliminary model results.

Keywords

Climate change research High alpine monitoring networks Catchment hydrology Physically based modelling Interdisciplinary research 

Notes

Acknowledgements

The authors thank all scientists and institutions that have contributed to the studies presented in this paper and gratefully acknowledge the continuous support of the national park staff. Research and technical instrumentation presented in this paper were financed by the Authority of the Berchtesgaden National Park.

References

  1. Apel R, Büttner G, Delannoy J, Krafft H, Plassmann G (2001) Groundwater Flow in Alpine Karst Aquifers and in Porous Media Tracer Experiments in the National Park Berchtesgaden. In: Seiler K-P, Wohnlich S (eds) Proceedings of the 31 International Association of Hydrogeologists Congress Munich, Germany, 10–14 September 2001, pp 3–7Google Scholar
  2. Barthel R, Reichenau T, Krimly T, Dabbert S, Schneider K, Mauser W (2011) Integrated modeling of climate change impacts on agriculture and groundwater resources. Water Resour Manag. doi: 10.1007/s11269-012-0001-9
  3. Bernhardt M, Zängl G, Liston GE, Strasser U, Mauser W (2009) Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain. Hydrol Process 27:1064–1075CrossRefGoogle Scholar
  4. BNP (2012) Website of the Berchtesgaden National Park. http://www.nationalpark-berchtesgaden.de. Accessed June 2012
  5. Braun R (1997) Torrener-Joch-Zone/Jenner/Hoher Göll - eine durch Kontinent/Kontinent-Kollision ausgelöste Gleitdecke in den Tauglboden Schichten (mittlerer Oberjura) - Berchtesgadener Alpen. PhD thesis, Philipps-University Marburg, GermanyGoogle Scholar
  6. Delannoy J, Plassman G, Apel R, Krafft H, Nedjai R (2001) Contribution spéléologique à la gestion durable dun lac de montagne : traçages sur le bassin-versant du Königsee (Alpes de Berchtesgaden, Bavière, Allemagne). Karstologia 38:1–12Google Scholar
  7. Dingeldey A (2007) Modellierung der touristischen Attraktivität zur Bestimmung der Übernachtungsnachfrage im Einzugsbereich der Oberen Donau unter Berücksichtigung von Umwelteinflüssen. PhD thesis, University Regensburg, GermanyGoogle Scholar
  8. Einsiedl F, Maloszweski P, Stichler W (2009) Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. J Hydrol 365:113–121CrossRefGoogle Scholar
  9. Ernst A, Schulz C, Schwarz N, Janisch S (2007) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Social Simulation: Technologies, Advances and New Discoveries, pp 138–149Google Scholar
  10. Franz H, Baier R, Gerecke R, Grab J, Hofmann G, Huber D, Konnert V, Kraller G, Kunstmann H, Künzl M, Lotz A, Strasser U, Vogel M, Warscher M (2011) Implementing the GLOCHAMORE Research strategy into the Biosphere Reserve Berchtesgadener Land. National Park BerchtesgadenGoogle Scholar
  11. Früh B, Bendix J, Nauss T, Pfeiffer A, Schipper JW, Thiess B, Wernli H (2007) Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteorologische Zeitschrift 16:1–19CrossRefGoogle Scholar
  12. Gao T, Kang S, Krause P, Cuo L, Nepal S (2011) A test of J2000 model in a glacierized catchment in the central Tibetan Plateau. Environ Earth Sci 65:1651–1659CrossRefGoogle Scholar
  13. Gerecke R, Franz H (2006) Quellen im Nationalpark Berchtesgaden. Lebensgemeinschaften als Indikatoren des Klimawandels. Forschungsberichte des Nationalpark Berchtesgaden 51:272Google Scholar
  14. GLORIA (2012) Website of the GLORIA Project. http://www.gloria.ac.at. Accessed July 2012
  15. GLOWA (2012) Website of the GLOWA-Danube Project. http://www.glowa-danube.de. Accessed July 2012
  16. Haber W (2002) Das MAB 6-Projekt “Der Mensch und die Biosphäre” - ökosystemforschung Berchtesgaden von 1984 bis 1991. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:7–19Google Scholar
  17. Hagg W, Mayer C, Steglich C (2008) Glacier changes in the Bavarian Alps from 1989/90 to 2006/2007. Zeitschrift fr Gletscherkunde und Glazialgeologie 42:37–46Google Scholar
  18. Hank T (2008) A Biophysically Based Coupled Model Approach For the Assessment of Canopy Processes Under Climate Change Conditions. PhD thesis, Ludwigs-Maximilian-University, MunichGoogle Scholar
  19. Hecht P, Huber D (2002) Verbreitung ausgewählter Pflanzenarten, ermittelt mit Hilfe des Geographischen Informationssystems. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:73–79Google Scholar
  20. Hennicker R, Bauer S, Janisch S, Ludwig M (2010) A generic framework for multi-disciplinary environmental modelling. In: Proceedings of the iEMSs Fifth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2010). International Environmental Modelling and Software SocietyGoogle Scholar
  21. Henseler M, Wirsig A, Krimly T, Dabbert S (2008) The influence of climate change, technological progress and political change on agricultural land use: Calculated scenarios for the upper danube catchment area. German J Agric Econ (Agrarwirtschaft) 57:207–219Google Scholar
  22. Kerner HF, Spandau L, Köppel J (1991) Methoden zur angewandten Ökosystemforschung entwickelt im MAB-Projekt 6 Ökosystemforschung Berchtesgaden Werkstattbericht Teil A: Anliegen und Fragestellungen. Teil B: Inhaltliche und methodische Konzeption. Teil C: Ablauf des Projekts. Teil D: Kritische Wrdigung und Empfehlungen. MAB-Mitteilungen, 35Google Scholar
  23. Kias U (2002) Nachführung der Biotop- und Nutzungstypenkartierung im Biosphärenreservat Berchtesgaden (1990 und 1997). Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:29–34Google Scholar
  24. KLIWA (2012) Website of the KLIWA Project. http://www.kliwa.de. Accessed July 2012
  25. Konnert M (2002a) Genetische Untersuchungen im Nationalpark Berchtesgaden. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:49–55Google Scholar
  26. Konnert V (2002b) Waldentwicklung zwischen 1983/84 und heute. Vergleich der Waldinventuren von 1984 und 1997 (Auszug). Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:21–28Google Scholar
  27. Kraller G (2008) Auswertung und Modellierung des Tracerversuchs am Hochkaltermassiv von 2001 im Nationalpark Berchtesgaden zur Bestimmung von hydraulischen Parametern des Grundwassersystems. Master’s thesis, Institut der Limnologie der Technischen Universität München, MunichGoogle Scholar
  28. Kraller G, Strasser U, Franz H (2011) Effect of Alpine Karst on the hydrology of the basin “Berchtesgadener Ache”: a comprehensive summary of karst research in the Berchtesgaden Alps. Eco mont j prot mt areas res 3:19–28CrossRefGoogle Scholar
  29. Kraller G, Warscher M, Vogl S, Marke T, Strasser U, Kunstmann H (2012) Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach. Hydrol Earth Sys Sci 16:1969–1990CrossRefGoogle Scholar
  30. Langenscheidt E (1981) Die Geologie zwischen Fagstein und Königssee in den Berchtesgadener Alpen. Unpublished Diploma Theses at the Philipps-University Marburg, GermanyGoogle Scholar
  31. Laux P, Vogl S, Qiu W, Knoche HR, Kunstmann H (2011) Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol Earth Sys Sci Discussions 8:3001–3045CrossRefGoogle Scholar
  32. Lebling C (1935) Geologische Verhältnisse des Gebirges um den Königssee. Abhandlungen der geologischen Landesuntersuchung am Bayerischen Oberbergamt 20:1–46Google Scholar
  33. Lippert W (1966) Die Pflanzengesellschaften des Naturschutzgebietes Berchtesgaden. Berichte der Bayerischen Botanischen Gesellschaft 39:67–122Google Scholar
  34. Lotz A (2006) Alpine Habitat Diversity - HABITALP - Project Report 2002-2006. EU Community Initiative INTERREG III B. Alpine Space Programme. Technical report, Nationalpark BerchtesgadenGoogle Scholar
  35. Maloszewski P, Büttner G, Apel G, Krafft H, Scholz M, Wagner B (2005) Quantitative evaluation of tracer experiments in Alpine Karst and Porous Aquifers in the National Park of Berchtesgaden. Landschaftsökologie und Umweltforschung 48:11–18Google Scholar
  36. Marke T (2008) Development and Application of a Model Interface To couple Land Surface Models with Regional Climate Models For Climate Change Risk Assessment In the Upper Danube Watershed. PhD thesis, Ludwigs-Maximilian-University, MunichGoogle Scholar
  37. Marke T, Mauser W, Pfeiffer A, Zängl G (2011a) A pragmatic approach for the downscaling and bias correction of regional climate simulations: evaluation in hydrological modeling. Geosci Model Dev 4:759–770CrossRefGoogle Scholar
  38. Marke T, Mauser W, Pfeiffer A, Zängl G, Jacob D (2011b) The effect of downscaling on river runoff modeling: A hydrological case study in the upper danube watershed. Hydrol Earth Sys Sci Discussions 8:6331–6384CrossRefGoogle Scholar
  39. Marke T, Strasser U (2011) GISMO - A tool for quality checking and closure of gaps in meteorological time series and its potential for climate change research. In: Abstracts of the conference ‘climate change in high mountain regions’ (125th Anniversary of Sonnblick), 28th August–1st September 2011, Salzburg, AustriaGoogle Scholar
  40. Mauser W, Ludwig R (2002) GLOWA-DANUBE A research concept to develop integrative techniques, scenarios and strategies regarding the global change of the water cycle. Advances Global Change Res 10:171–188CrossRefGoogle Scholar
  41. Mauser W, Marke T (2009) Climate change and water resources: Scenarios of low-flow conditions in the upper danube river basin. IAHS Publications 327:225–236Google Scholar
  42. Merz M (1987) Geologische Aufnahme des MAB-6-Testgebietes Ramsau: östlicher Teil. Unpublished Diploma Thesis at the Philipps-University Marburg, MarburgGoogle Scholar
  43. Murr F (1975) Die Vögel der Berchtesgadener und Reichenhaller Gebirgsgruppen. Monticola (special issue) 4:1–184Google Scholar
  44. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, Part I A discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  45. Nauss T, Kokhanovsky AA (2007) Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Advances Geosci 10:99–102CrossRefGoogle Scholar
  46. PermaNet (2012) Website of the PermaNet Project. http://www.permanet.alpinespace.eu. Accessed July 2012
  47. Pfeiffer A, Zängl G (2010) Validation of climate-mode MM5- simulations for the European Alpine Region. Theor Appl Climatol 101:93–108CrossRefGoogle Scholar
  48. Prasch M, Marke T, Strasser U, Mauser W (2011) Large scale integrated hydrological modelling of the impact of climate change on the water balance with danubia. Advances Sci Res 7:61–70CrossRefGoogle Scholar
  49. Schulla J (2007) Model Description WaSiM-ETH. Technical report, ETH Zürich, ZürichGoogle Scholar
  50. Schuster A (2002) Zwanzig Jahre Singvogelforschung im Nationalpark. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:81–88Google Scholar
  51. Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations. Technol Forecast Social Change 76:497–511CrossRefGoogle Scholar
  52. Siebeck O (1982) Der Königssee - Eine limnologische Projektstudie. Forschungsberichte des Nationalpark Berchtesgaden 5:1–132Google Scholar
  53. StMLU (2001) Nationalparkplan. Nationalpark Berchtesgaden. StMLU (Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen). http://www.nationalparkplan.de (2011-12-06)
  54. Strasser U (2008) Modelling of the mountain snow cover in the Berchtesgaden National Park. Forschungsberichte des Nationalpark Berchtesgaden 55:1–184Google Scholar
  55. Strasser U, Marke T (2010) ESCIMO.spread - a spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions. Geosci Model Dev 3:643–652CrossRefGoogle Scholar
  56. Strasser U, Marke T, Sass O, Birk S, Winkler G (2012) Johns Creek Valley - a Mountainous Catchment for Long-Term Interdisciplinary Human-Environment System Research in Upper Styria (Austria). Environmental Earth Sciences (accepted)Google Scholar
  57. Strasser U, Warscher M, Liston GE (2011) Modeling Snow Canopy Processes on an Idealized Mountain. Hydrometeorol 12:663–677CrossRefGoogle Scholar
  58. Tepfenhart M, Mauser W, Siebel F (2007) Climate change and the competition among ski areas for day tourists. Proceedings of the Alpine Snow Workshop, Forschungsberichte des Nationalpark Berchtesgaden 53:131–137Google Scholar
  59. Themessl M, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544CrossRefGoogle Scholar
  60. UNESCO (2012a) Biosphere Reserves - Learning Sites for Sustainable Development, Webpage of the UNESCO. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/. Accessed June 2012
  61. UNESCO (2012b) Global and Climate Change in Mountain Sites (GLOCHAMOST). Webpage of the UNESCO. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/specific-ecosystems/mountains/glochamost/. Accessed June 2012
  62. Warscher M, Strasser U, Kraller G, Marke T, Franz H, Kunstmann H (2012) Performance of Complex Snow Cover Descriptions in a Distributed Hydrological Model System - A Case Study for the High Alpine Terrain of the Berchtesgaden Alps. Water Resources Research, (submitted)Google Scholar
  63. Wirsig A, Henseler M, Simota C, Krimly T, Dabbert S (2007) Modelling the impact of global change on regional agricultural land use in alpine regions. Agrarwirtschaft und Agrarsoziologie 1/07:101–116Google Scholar
  64. Yang Y-g, Xiao H-l, Zou S-b, Zhao L-j, Zhou M-x, Hou L-g, Wang F (2012) Hydrochemical and hydrological processes in the different landscape zones of alpine cold region in china. Environ Earth Sci 65:609–620CrossRefGoogle Scholar
  65. Zhang Y, Zhang S, Xia J, Hua D (2013) Temporal and spatial variation of the main water balance components in the three rivers source region, china from 1960 to 2000. Environ Earth Sci 68:973–983CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Marke
    • 1
  • U. Strasser
    • 1
  • G. Kraller
    • 2
  • M. Warscher
    • 3
  • H. Kunstmann
    • 4
    • 3
  • H. Franz
    • 2
  • M. Vogel
    • 2
  1. 1.Institute of GeographyUniversity InnsbruckInnsbruckAustria
  2. 2.Berchtesgaden National ParkBerchtesgadenGermany
  3. 3.Institute of Meteorology and Climate Research (IMK-IFU)Karlsruhe Institute of Technology (KIT)Garmisch-PartenkirchenGermany
  4. 4.Institute for GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations