Skip to main content

Advertisement

Log in

The Berchtesgaden National Park (Bavaria, Germany): a platform for interdisciplinary catchment research

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Berchtesgaden National Park (Bavaria, Germany), a study site of the UNESCO Man and the Biosphere program in the catchment of Berchtesgadener Ache, is introduced as a platform for interdisciplinary research. As the investigation of how human activities affect the natural resources in the park area, which has been defined a main aim of the program, naturally requires expertise from different scientific fields, interdisciplinary research has been fostered in the national park plan since the very beginning of the Man and the Biosphere program in 1981. To analyze the complex interactions and mutual dependencies between socio-economic and natural systems, a variety of monitoring programs have been initialized in different disciplines (e.g. climate sciences, zoology, botany) that are addressed in this paper. As a result of these research efforts, the park offers a profound data basis to be used in future studies (e.g. land cover classifications, maps of geological and soil conditions). Detailed information is provided on a climate monitoring network that has been installed in the park starting in the year 1993. The network has been continuously extended over the years and now provides extraordinary comprehensive information on meteorological conditions in the park, setting the basis for current as well as for potential future climate-related studies. A special characteristic of the station network is the fact that it covers a large range of elevations from 600 m a.s.l in the valleys to 2,600 m a.s.l in the summit regions and is therefore able to capture altitudinal gradients in meteorological variables as typical for Alpine regions. Due to the large number of stations in high elevations (15 stations are in elevations higher than 1,500 m a.s.l) the network provides information on the complex hydrometeorological conditions in summit regions which are often insufficiently represented in observation networks due to the increased costs for maintenance of climate stations in these locations. Beside the various monitoring programs, a variety of numerical models have been (further) developed for application in the park area that make extensive use of the different data collected and therefore largely benefit from the comprehensive data pool. The potential and necessity of the climate monitoring network for modelling studies is demonstrated by utilizing the meteorological recordings in the framework of a hydrometeorological simulation experiment. Further examples of environmental modelling efforts are shortly described together with preliminary model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Apel R, Büttner G, Delannoy J, Krafft H, Plassmann G (2001) Groundwater Flow in Alpine Karst Aquifers and in Porous Media Tracer Experiments in the National Park Berchtesgaden. In: Seiler K-P, Wohnlich S (eds) Proceedings of the 31 International Association of Hydrogeologists Congress Munich, Germany, 10–14 September 2001, pp 3–7

  • Barthel R, Reichenau T, Krimly T, Dabbert S, Schneider K, Mauser W (2011) Integrated modeling of climate change impacts on agriculture and groundwater resources. Water Resour Manag. doi:10.1007/s11269-012-0001-9

  • Bernhardt M, Zängl G, Liston GE, Strasser U, Mauser W (2009) Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain. Hydrol Process 27:1064–1075

    Article  Google Scholar 

  • BNP (2012) Website of the Berchtesgaden National Park. http://www.nationalpark-berchtesgaden.de. Accessed June 2012

  • Braun R (1997) Torrener-Joch-Zone/Jenner/Hoher Göll - eine durch Kontinent/Kontinent-Kollision ausgelöste Gleitdecke in den Tauglboden Schichten (mittlerer Oberjura) - Berchtesgadener Alpen. PhD thesis, Philipps-University Marburg, Germany

  • Delannoy J, Plassman G, Apel R, Krafft H, Nedjai R (2001) Contribution spéléologique à la gestion durable dun lac de montagne : traçages sur le bassin-versant du Königsee (Alpes de Berchtesgaden, Bavière, Allemagne). Karstologia 38:1–12

    Google Scholar 

  • Dingeldey A (2007) Modellierung der touristischen Attraktivität zur Bestimmung der Übernachtungsnachfrage im Einzugsbereich der Oberen Donau unter Berücksichtigung von Umwelteinflüssen. PhD thesis, University Regensburg, Germany

  • Einsiedl F, Maloszweski P, Stichler W (2009) Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. J Hydrol 365:113–121

    Article  Google Scholar 

  • Ernst A, Schulz C, Schwarz N, Janisch S (2007) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Social Simulation: Technologies, Advances and New Discoveries, pp 138–149

  • Franz H, Baier R, Gerecke R, Grab J, Hofmann G, Huber D, Konnert V, Kraller G, Kunstmann H, Künzl M, Lotz A, Strasser U, Vogel M, Warscher M (2011) Implementing the GLOCHAMORE Research strategy into the Biosphere Reserve Berchtesgadener Land. National Park Berchtesgaden

  • Früh B, Bendix J, Nauss T, Pfeiffer A, Schipper JW, Thiess B, Wernli H (2007) Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteorologische Zeitschrift 16:1–19

    Article  Google Scholar 

  • Gao T, Kang S, Krause P, Cuo L, Nepal S (2011) A test of J2000 model in a glacierized catchment in the central Tibetan Plateau. Environ Earth Sci 65:1651–1659

    Article  Google Scholar 

  • Gerecke R, Franz H (2006) Quellen im Nationalpark Berchtesgaden. Lebensgemeinschaften als Indikatoren des Klimawandels. Forschungsberichte des Nationalpark Berchtesgaden 51:272

    Google Scholar 

  • GLORIA (2012) Website of the GLORIA Project. http://www.gloria.ac.at. Accessed July 2012

  • GLOWA (2012) Website of the GLOWA-Danube Project. http://www.glowa-danube.de. Accessed July 2012

  • Haber W (2002) Das MAB 6-Projekt “Der Mensch und die Biosphäre” - ökosystemforschung Berchtesgaden von 1984 bis 1991. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:7–19

    Google Scholar 

  • Hagg W, Mayer C, Steglich C (2008) Glacier changes in the Bavarian Alps from 1989/90 to 2006/2007. Zeitschrift fr Gletscherkunde und Glazialgeologie 42:37–46

    Google Scholar 

  • Hank T (2008) A Biophysically Based Coupled Model Approach For the Assessment of Canopy Processes Under Climate Change Conditions. PhD thesis, Ludwigs-Maximilian-University, Munich

  • Hecht P, Huber D (2002) Verbreitung ausgewählter Pflanzenarten, ermittelt mit Hilfe des Geographischen Informationssystems. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:73–79

    Google Scholar 

  • Hennicker R, Bauer S, Janisch S, Ludwig M (2010) A generic framework for multi-disciplinary environmental modelling. In: Proceedings of the iEMSs Fifth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2010). International Environmental Modelling and Software Society

  • Henseler M, Wirsig A, Krimly T, Dabbert S (2008) The influence of climate change, technological progress and political change on agricultural land use: Calculated scenarios for the upper danube catchment area. German J Agric Econ (Agrarwirtschaft) 57:207–219

    Google Scholar 

  • Kerner HF, Spandau L, Köppel J (1991) Methoden zur angewandten Ökosystemforschung entwickelt im MAB-Projekt 6 Ökosystemforschung Berchtesgaden Werkstattbericht Teil A: Anliegen und Fragestellungen. Teil B: Inhaltliche und methodische Konzeption. Teil C: Ablauf des Projekts. Teil D: Kritische Wrdigung und Empfehlungen. MAB-Mitteilungen, 35

  • Kias U (2002) Nachführung der Biotop- und Nutzungstypenkartierung im Biosphärenreservat Berchtesgaden (1990 und 1997). Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:29–34

    Google Scholar 

  • KLIWA (2012) Website of the KLIWA Project. http://www.kliwa.de. Accessed July 2012

  • Konnert M (2002a) Genetische Untersuchungen im Nationalpark Berchtesgaden. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:49–55

    Google Scholar 

  • Konnert V (2002b) Waldentwicklung zwischen 1983/84 und heute. Vergleich der Waldinventuren von 1984 und 1997 (Auszug). Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:21–28

    Google Scholar 

  • Kraller G (2008) Auswertung und Modellierung des Tracerversuchs am Hochkaltermassiv von 2001 im Nationalpark Berchtesgaden zur Bestimmung von hydraulischen Parametern des Grundwassersystems. Master’s thesis, Institut der Limnologie der Technischen Universität München, Munich

  • Kraller G, Strasser U, Franz H (2011) Effect of Alpine Karst on the hydrology of the basin “Berchtesgadener Ache”: a comprehensive summary of karst research in the Berchtesgaden Alps. Eco mont j prot mt areas res 3:19–28

    Article  Google Scholar 

  • Kraller G, Warscher M, Vogl S, Marke T, Strasser U, Kunstmann H (2012) Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach. Hydrol Earth Sys Sci 16:1969–1990

    Article  Google Scholar 

  • Langenscheidt E (1981) Die Geologie zwischen Fagstein und Königssee in den Berchtesgadener Alpen. Unpublished Diploma Theses at the Philipps-University Marburg, Germany

  • Laux P, Vogl S, Qiu W, Knoche HR, Kunstmann H (2011) Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol Earth Sys Sci Discussions 8:3001–3045

    Article  Google Scholar 

  • Lebling C (1935) Geologische Verhältnisse des Gebirges um den Königssee. Abhandlungen der geologischen Landesuntersuchung am Bayerischen Oberbergamt 20:1–46

    Google Scholar 

  • Lippert W (1966) Die Pflanzengesellschaften des Naturschutzgebietes Berchtesgaden. Berichte der Bayerischen Botanischen Gesellschaft 39:67–122

    Google Scholar 

  • Lotz A (2006) Alpine Habitat Diversity - HABITALP - Project Report 2002-2006. EU Community Initiative INTERREG III B. Alpine Space Programme. Technical report, Nationalpark Berchtesgaden

  • Maloszewski P, Büttner G, Apel G, Krafft H, Scholz M, Wagner B (2005) Quantitative evaluation of tracer experiments in Alpine Karst and Porous Aquifers in the National Park of Berchtesgaden. Landschaftsökologie und Umweltforschung 48:11–18

    Google Scholar 

  • Marke T (2008) Development and Application of a Model Interface To couple Land Surface Models with Regional Climate Models For Climate Change Risk Assessment In the Upper Danube Watershed. PhD thesis, Ludwigs-Maximilian-University, Munich

  • Marke T, Mauser W, Pfeiffer A, Zängl G (2011a) A pragmatic approach for the downscaling and bias correction of regional climate simulations: evaluation in hydrological modeling. Geosci Model Dev 4:759–770

    Article  Google Scholar 

  • Marke T, Mauser W, Pfeiffer A, Zängl G, Jacob D (2011b) The effect of downscaling on river runoff modeling: A hydrological case study in the upper danube watershed. Hydrol Earth Sys Sci Discussions 8:6331–6384

    Article  Google Scholar 

  • Marke T, Strasser U (2011) GISMO - A tool for quality checking and closure of gaps in meteorological time series and its potential for climate change research. In: Abstracts of the conference ‘climate change in high mountain regions’ (125th Anniversary of Sonnblick), 28th August–1st September 2011, Salzburg, Austria

  • Mauser W, Ludwig R (2002) GLOWA-DANUBE A research concept to develop integrative techniques, scenarios and strategies regarding the global change of the water cycle. Advances Global Change Res 10:171–188

    Article  Google Scholar 

  • Mauser W, Marke T (2009) Climate change and water resources: Scenarios of low-flow conditions in the upper danube river basin. IAHS Publications 327:225–236

    Google Scholar 

  • Merz M (1987) Geologische Aufnahme des MAB-6-Testgebietes Ramsau: östlicher Teil. Unpublished Diploma Thesis at the Philipps-University Marburg, Marburg

  • Murr F (1975) Die Vögel der Berchtesgadener und Reichenhaller Gebirgsgruppen. Monticola (special issue) 4:1–184

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, Part I A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nauss T, Kokhanovsky AA (2007) Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Advances Geosci 10:99–102

    Article  Google Scholar 

  • PermaNet (2012) Website of the PermaNet Project. http://www.permanet.alpinespace.eu. Accessed July 2012

  • Pfeiffer A, Zängl G (2010) Validation of climate-mode MM5- simulations for the European Alpine Region. Theor Appl Climatol 101:93–108

    Article  Google Scholar 

  • Prasch M, Marke T, Strasser U, Mauser W (2011) Large scale integrated hydrological modelling of the impact of climate change on the water balance with danubia. Advances Sci Res 7:61–70

    Article  Google Scholar 

  • Schulla J (2007) Model Description WaSiM-ETH. Technical report, ETH Zürich, Zürich

  • Schuster A (2002) Zwanzig Jahre Singvogelforschung im Nationalpark. Forschung im Nationalpark Berchtesgaden von 1978 bis 2001, Forschungsberichte des Nationalpark Berchtesgaden 46:81–88

    Google Scholar 

  • Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations. Technol Forecast Social Change 76:497–511

    Article  Google Scholar 

  • Siebeck O (1982) Der Königssee - Eine limnologische Projektstudie. Forschungsberichte des Nationalpark Berchtesgaden 5:1–132

    Google Scholar 

  • StMLU (2001) Nationalparkplan. Nationalpark Berchtesgaden. StMLU (Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen). http://www.nationalparkplan.de (2011-12-06)

  • Strasser U (2008) Modelling of the mountain snow cover in the Berchtesgaden National Park. Forschungsberichte des Nationalpark Berchtesgaden 55:1–184

    Google Scholar 

  • Strasser U, Marke T (2010) ESCIMO.spread - a spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions. Geosci Model Dev 3:643–652

    Article  Google Scholar 

  • Strasser U, Marke T, Sass O, Birk S, Winkler G (2012) Johns Creek Valley - a Mountainous Catchment for Long-Term Interdisciplinary Human-Environment System Research in Upper Styria (Austria). Environmental Earth Sciences (accepted)

  • Strasser U, Warscher M, Liston GE (2011) Modeling Snow Canopy Processes on an Idealized Mountain. Hydrometeorol 12:663–677

    Article  Google Scholar 

  • Tepfenhart M, Mauser W, Siebel F (2007) Climate change and the competition among ski areas for day tourists. Proceedings of the Alpine Snow Workshop, Forschungsberichte des Nationalpark Berchtesgaden 53:131–137

    Google Scholar 

  • Themessl M, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544

    Article  Google Scholar 

  • UNESCO (2012a) Biosphere Reserves - Learning Sites for Sustainable Development, Webpage of the UNESCO. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/. Accessed June 2012

  • UNESCO (2012b) Global and Climate Change in Mountain Sites (GLOCHAMOST). Webpage of the UNESCO. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/specific-ecosystems/mountains/glochamost/. Accessed June 2012

  • Warscher M, Strasser U, Kraller G, Marke T, Franz H, Kunstmann H (2012) Performance of Complex Snow Cover Descriptions in a Distributed Hydrological Model System - A Case Study for the High Alpine Terrain of the Berchtesgaden Alps. Water Resources Research, (submitted)

  • Wirsig A, Henseler M, Simota C, Krimly T, Dabbert S (2007) Modelling the impact of global change on regional agricultural land use in alpine regions. Agrarwirtschaft und Agrarsoziologie 1/07:101–116

    Google Scholar 

  • Yang Y-g, Xiao H-l, Zou S-b, Zhao L-j, Zhou M-x, Hou L-g, Wang F (2012) Hydrochemical and hydrological processes in the different landscape zones of alpine cold region in china. Environ Earth Sci 65:609–620

    Article  Google Scholar 

  • Zhang Y, Zhang S, Xia J, Hua D (2013) Temporal and spatial variation of the main water balance components in the three rivers source region, china from 1960 to 2000. Environ Earth Sci 68:973–983

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all scientists and institutions that have contributed to the studies presented in this paper and gratefully acknowledge the continuous support of the national park staff. Research and technical instrumentation presented in this paper were financed by the Authority of the Berchtesgaden National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Marke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marke, T., Strasser, U., Kraller, G. et al. The Berchtesgaden National Park (Bavaria, Germany): a platform for interdisciplinary catchment research. Environ Earth Sci 69, 679–694 (2013). https://doi.org/10.1007/s12665-013-2317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2317-z

Keywords

Navigation