Advertisement

Environmental Earth Sciences

, Volume 69, Issue 2, pp 317–333 | Cite as

Catchments as reactors: a comprehensive approach for water fluxes and solute turnover

  • Peter Grathwohl
  • Hermann Rügner
  • Thomas Wöhling
  • Karsten Osenbrück
  • Marc Schwientek
  • Sebastian Gayler
  • Ute Wollschläger
  • Benny Selle
  • Marion Pause
  • Jens-Olaf Delfs
  • Matthias Grzeschik
  • Ulrich Weller
  • Martin Ivanov
  • Olaf A. Cirpka
  • Ulrich Maier
  • Bertram Kuch
  • Wolfgang Nowak
  • Volker Wulfmeyer
  • Kirsten Warrach-Sagi
  • Thilo Streck
  • Sabine Attinger
  • Lars Bilke
  • Peter Dietrich
  • Jan H. Fleckenstein
  • Thomas Kalbacher
  • Olaf Kolditz
  • Karsten Rink
  • Luis Samaniego
  • Hans-Jörg Vogel
  • Ulrike Werban
  • Georg Teutsch
Special Issue

Abstract

Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.

Keywords

Water and solute fluxes  Water quality Catchments Land-surface atmosphere exchange Processes and feedbacks Modeling  Monitoring 

Notes

Acknowledgments

This work was supported by a grant from the Ministry of Science, Research and Arts of Baden-Württemberg (AZ Zu 33-721.3-2) and the Helmholtz Centre for Environmental Research—UFZ, Leipzig. Research in the Bode Catchment was in addition supported by TERENO (TERrestrial ENvironmental Observatories).

References

  1. Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange. Hydrol Process 23(15):2165–2177CrossRefGoogle Scholar
  2. Barth JAC, Grathwohl P, Jones KC (2007) AquaTerra: pollutant behavior in the soil, sediment, ground, and surface water system. Environ Poll 148(3):693–694CrossRefGoogle Scholar
  3. Basu N, Destouni G, Jawitz JW, Thompson SE, Loukinova NV, Darracq A, Zanardo S, Yaeger M, Sivapalan M, Rinaldo A, Rao PSC (2010) Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys Res Lett 37:L23404. doi: 10.1029/2010GL045168
  4. Bates BC, Kundzewucz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, p 210Google Scholar
  5. Bauer HS, Wulfmeyer V, Schwitalla T, Zus F, Grzeschik M (2011) Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A 63:263–282. doi: 10.1111/j.1600-0870.2010.00489.x CrossRefGoogle Scholar
  6. Behrendt A, Wulfmeyer V, Di Girolamo P, Kiemle C, Bauer H-S, Schaberl T, Summa D, Whiteman DN, Demoz BB, Browell EV, Ismail S, Ferrare R, Kooi S, Ehret G, Wang J (2007) Intercomparison of water vapor data measured with lidar during IHOP_2002, Part 1: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes. J Atmos Oceanic Technol 24(1):3-21. doi: 10.1175/JTECH1924.1 Google Scholar
  7. Behrendt A, Wulfmeyer V, Riede A, Wagner G, Pal S, Bauer H, Radlach M, Späth F (2009) Three-dimensional observations of atmospheric humidity with a scanning differential absorption Lidar. Proc SPIE 7475:74750L. doi: 10.1117/12.835143
  8. Biernath C, Gayler S, Klein C, Bittner S, Högy P, Fangmeier A, Priesack E (2011) Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. Eur J Agron 35:71–82CrossRefGoogle Scholar
  9. Boano F, Revelli R, Ridolfi L (2010) Effect of streamflow stochasticity on bedform-driven hyporheic exchange. Adv Water Resour 33(11):1367–1374CrossRefGoogle Scholar
  10. Bogena et mult (2012) TERENO—Ein langfristiges Beobachtungsnetzwerk für die terrestrische Umweltforschung. Hydrol Wasserbewirt 56(3):138–143Google Scholar
  11. Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014CrossRefGoogle Scholar
  12. Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50(2):170–175CrossRefGoogle Scholar
  13. Caldwell TG, Wöhling T, Young MH, Boyle DP, McDonald EV (2012) Characterization of disturbed desert soils using multi objective parameter optimization. Vadose Zone J. doi: 10.2136/vzj2012.0083
  14. Cardenas MB (2009) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res 45(6). doi: 10.1029/2008WR007651
  15. Centler F, Shao H, De Biase C, Park C-H, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biochemical subsurface processes. Comput Geosci 36:397–405CrossRefGoogle Scholar
  16. Cirpka OA, Fienen MN, Hofer M, Hoehn E, Tessarini A, Kipfer R, Kitanidis PK (2007) Analyzing bank filtration by deconvoluting time series of electric conductivity. Ground Water 45(3):318–328CrossRefGoogle Scholar
  17. Cook P, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42(10):W10411CrossRefGoogle Scholar
  18. Daly GL, Wania F (2005) Organic contaminants in mountains. Critical review. Environ Sci Technol 39:385–398CrossRefGoogle Scholar
  19. Delfs J-O, Park C-H, Kolditz O (2009) A sensitivity analysis of Hortonian flow. Adv Water Resour 32(9):1386–1395CrossRefGoogle Scholar
  20. Delfs J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2012) Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci 65:1439–1459CrossRefGoogle Scholar
  21. Delfs J-O, Wang W, Kalbacher T, Maier U, Grathwohl P, Shao H, Kolditz O (2013) Coupling two-phase subsurface flow with overland flow to assess the impact of the gas phase on surface runoff. Environ Earth Sci 69(2) (accepted)Google Scholar
  22. DFG (2012) Strategiepapier “Langzeitperspektiven und Infrastruktur der terrestrischen Forschung Deutschlands—ein systemischer Ansatz”. Arbeitsgruppe “Infrastruktur für die terrestrische Forschung”, Senatskommission für Stoffe und Ressourcen in der Landwirtschaft, Senatskommission für Wasserforschung, Senatskommission für Zukunftsaufgaben der Geowissenschaften, Nationales Komitee für Global Change ForschungGoogle Scholar
  23. Doro KO, Leven C, Cirpka OA (2013) Delineating subsurface heterogeneity at the Steinlach River Loop using geophysical and hydrogeological methods. Environ Earth Sci (in revision)Google Scholar
  24. EU-WFD (2000) European Water Framework Directive. Eur Off J L327:1–72Google Scholar
  25. Febria CM, Beddoes P, Fulthorpe RR, Williams DD (2012) Bacterial community dynamics in the hyporheic zone of an intermittent stream. ISME J 6(5):1078–1088CrossRefGoogle Scholar
  26. Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46: W00F02Google Scholar
  27. Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33(11):1291–1295CrossRefGoogle Scholar
  28. Gayler S, Ingwersen J, Priesack E, Wöhling T, Wulfmeyer V, Streck T (2013) Assessing the relevance of sub surface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: comparison with field data and crop model simulations. Environ Earth Sci 69(2). doi: 10.1007/s12665-013-2309-z
  29. Gocht T, Ligouis B, Hinderer M, Grathwohl P (2007) Accumulation of polycyclic aromatic hydrocarbons in rural soils based on mass balances at the catchment scale. Environ Toxicol Chem 26(4):591–600CrossRefGoogle Scholar
  30. Gooseff MN, LaNier J, Haggerty R, Kokkeler K (2005) Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon. Water Resour Res 41(6). doi: 10.1029/2004WR003513
  31. Grzeschik M, Bauer H-S, Wulfmeyer V (2008) Four-dimensional variational analysis of water-vapor Raman lidar data and their impact on mesoscale forecasts. J Atmos Oceanic Technol 25:1437–1453CrossRefGoogle Scholar
  32. Grzeschik M, Schwitalla T, Bauer H-S, Wulfmeyer V (2012) Comparison of WRF 3D-Var with the DART EnKF for a COPS IOP. 6th HyMeX workshop, Primosten, 7–10 May 2012Google Scholar
  33. Haberer CM, Rolle M, Liu S., Cirpka OA, Grathwohl P (2011) A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. J Contam Hydrol 122:26–39. doi: 10.1016/j.jconhyd.2010.10.006 Google Scholar
  34. Haggerty R, Argerich A, Marti E (2008) Development of a ‘‘smart’’ tracer for the assessment of microbiological activity and sediment-water interaction in natural waters: The resazurin-resorufin system. Water Resour Res 44(6). doi: 10.1029/2007WR006670
  35. Haggerty R, Marti E, Argerich A, von Schiller D, Grimm NB (2009) Resazurin as a “smart’’ tracer for quantifying metabolically active transient storage in stream ecosystems. J Geophys Res 114. doi: 10.1029/2008JG000942
  36. HVZ Sachsen-Anhalt (2012) Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Hochwasservorhersagezentrale Sachsen-Anhalt. http://www.hochwasservorhersage.sachsen-anhalt.de
  37. Ingwersen J, Steffens K, Högy P, Warrach-Sagi K, Wizemann H-D, Zhunusbayeva D, Poltoradnev M, Gäbler R, Fangmeier A, Wulfmeyer V, Streck T (2011) Comparison of NOAH simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151:345–355CrossRefGoogle Scholar
  38. Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918CrossRefGoogle Scholar
  39. Kalbacher T, Delfs JO, Shao H et al (2012) The IWAS-ToolBox: software coupling for an integrated water resources management IWAS SI. Environ Earth Sci 65(5):1367–1380CrossRefGoogle Scholar
  40. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for GW-surface water interactions: a review. HESS 10(6):873–887Google Scholar
  41. Köhne JM, Wöhling T, Pot V, Benoit P, Leguédois S, Le Bissonnais Y, Šimrunek J (2011) Coupled simulation of surface runoff and soil water flow using multi-objective parameter estimation. J Hydrol 403:141–156CrossRefGoogle Scholar
  42. Kolditz O, Rink K, Shao HB, Kalbacher T, Zacharias S, Kunkel R, Dietrich P (2012) International viewpoint and news: data and modelling platforms in environmental earth sciences. Environ Earth Sci 66:1279–1284CrossRefGoogle Scholar
  43. Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K (2013) TEODOOR—a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci (in revision)Google Scholar
  44. Lausch A, Pause M, Merbach I, Zacharias S, Doktor D, Volk M, Seppelt R (2012) A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape. Environ Monit Assess. doi: 10.1007/s10661-012-2627-8
  45. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model. J Adv Model Earth Syst 3(27) Art. 2011MS000045:27 Google Scholar
  46. Lemke D, Liao Z, Cirpka OA (2012) Ermittlung von hyporheischen Austauschflüssen und deren Verweilzeiten mit Hilfe von reaktiven und konservativen Tracern. Tag der Hydrologie 2012, March 22–23, 2012, Freiburg, Germany, 54–58Google Scholar
  47. Lemke D, Schnegg PA, Schwientek M, Osenbrück K, Cirpka OA (2013) A field fluorometer for the simultaneous online-measurement of conservative (Na-fluorescein) and reactive tracers (resazurin, resorufin). Environ Earth Sci 69(2). doi: 10.1007/s12665-013-2305-3
  48. Leube PC, Geiges A, Nowak W (2012) Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design. Water Resour Res 48 W02501. doi: 10.1029/2010WR010137
  49. Liao Z, Cirpka OA (2011) Shape-free inference of hyporheic travel-time distributions from conservative and reactive tracer tests in streams. Water Resour Res 47(7). doi: 10.1029/2010WR009927
  50. Liu Y, Beckingham B, Rügner H, Li Zhe, Ma Limin, Schwientek M, Xies Huan, Zaoh Jianfu, Grathwohl P (2013) Comparison of sedimentary PAHs in the Rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly-industrialized countries. Environ Sci Technol. doi: 10.1021/es3031566
  51. Maier U, Flegr M, Rügner H, Grathwohl P (2013) Long-term solute transport and geochemical equilibria in seepage water and groundwater in a catchment cross section. Envron Earth Sci 69(2) (accepted)Google Scholar
  52. Martin H, Patterson BM, Davis GB, Grathwohl P (2003) Comparative field trial of time-integrated aqueous contaminant monitoring with ceramic dosimeters and conventional water sampling. Environ Sci Technol 37(7):1360–1364CrossRefGoogle Scholar
  53. Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geosci 1(10):665–669CrossRefGoogle Scholar
  54. Maxwell RM, Chow FK, Kollet SJ (2007) The groundwater–land–surface–atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv Water Resour 30(12):2447–2466CrossRefGoogle Scholar
  55. Maxwell RM, Lundquist JK, Mirocha JD, Smith SG, Woodward CS, Tompson AFB (2011) Development of a coupled groundwater-atmosphere model. Mon Weather Rev 139(1):96–116CrossRefGoogle Scholar
  56. Moore CR, Wöhling T, Wolf L (2011) Optimisation of monitoring data for increased predictive reliability of regional water allocation models. In: sustaining our future—Proceedings of the MODSIM11 international congress on modelling and simulation, Perth, 12–16 Dec 2011Google Scholar
  57. News Nature (2008) Enough water to go around? Nature 452(7185):253–310CrossRefGoogle Scholar
  58. Niu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2012) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:D12109CrossRefGoogle Scholar
  59. Nowak W (2010) Measures of parameter uncertainty in geostatistical estimation and geostatistical optimal design. Math Geosc 42(2):199–221CrossRefGoogle Scholar
  60. Nowak W, Rubin YN, de Barros FPJ (2010) Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour Res 46(W03535), doi: 10.1029/2009WR008312
  61. Nowak W, Rubin YN, de Barros FPJ (2012) A hypothesis-driven approach to optimize field campaigns. Water Resour Res. doi: 10.1029/2011WR011016
  62. Ollesch G (2008) Erfassung und Modellierung der Schneeschmelzerosion am Beispiel der Kleineinzugsgebiete Schäfertal (Deutschland) und Lubazhinkha (Russland), Habilitationsschrift Fakultät für Geowissenschaften, Geotechnik und Bergbau der TU Bergakademie Freiberg, p 213Google Scholar
  63. Osenbrück K, Wöhling Th, Lemke D, Rohrbach N, Schwientek M, Leven C, Castillo Alvarez C, Taubald H, Cirpka OA (2013) Assessing hyporheic exchange and associated travel times by hydraulic, chemical, and isotopic monitoring at the Steinlach Test Site, Germany. Environ Earth Sci 69(2). doi: 10.1007/s12665-012-2155-4
  64. Park C-H, Beyer C, Bauer S et al (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environ Geol 55(8):1755–1766CrossRefGoogle Scholar
  65. Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the and surface. J Atmos Sci 62:2078–2097CrossRefGoogle Scholar
  66. Pause M, Schulz K, Zacharias S, Lausch A (2012) Near-surface soil moisture estimation by combining airborne L-band brightness temperature observations and imaging hyperspectral data at the field scale. J Appl Rem Sens, acceptedGoogle Scholar
  67. Pause M, Lausch A, Jagdhuber T, Hejnsek I, Denk A (2013) WESS/TERENO Env Sens observations 2011: toward multi-sensor land surface parameter retrieval at the small catchment scale. Environ Earth Sci (in revision)Google Scholar
  68. Reinstorf F, Wollschläger U, John H, Tiedke J (2013) The Schäfertal catchment/Harz Mountains—site description, observation programme and recent runoff modelling results. Environ Earth Sci (in revision)Google Scholar
  69. Rink K, Fischer T, Selle B, Kolditz O (2013) A data exploration framework for validation and setup of hydrological models. Environ Earth Sci 69(2). doi: 10.1007/s12665-012-2030-3
  70. Robinson DA, Binley A, Crook N, Lewis FD, Ferré TPA, Grauch VJS, Knight R, Knoll M, Lakshmi V, Miller R, Nyquist J, Pellerin L, Singha K, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22:3604–3635. doi: 10.1002/hyp.6963 CrossRefGoogle Scholar
  71. Rossi L, Chèvre N, Fankhauser R, Margot J, Curdy R, Babut M, Barry DA (2013) Sediment contamination assessment in urban areas based on total suspended solids. Water Res 47:339–350CrossRefGoogle Scholar
  72. Rotach MW, et mult. (2009) MAP D-PHASE: Realtime demonstration of weather forecast quality in the Alpine Region. Bull Amer Meteor Soc 90:1321–1336. doi: 10.1175/2009BAMS2776.1 Google Scholar
  73. Rügner H, Schwientek M, Beckingham B, Kuch B, Grathwohl P (2013) Turbidity as a proxy for total suspended solids (TSS) and particle facilitated transport in catchments. Environ Earth Sci 69(2). doi: 10.1007/s12665-013-2307-1
  74. Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res 46:W05523, doi: 10.1029/2008WR007327
  75. Santanello J, Peters-Lidard C, Kumar S, Alonge C, Tao WK (2009) A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales. J Hydrom 10(3):577–599CrossRefGoogle Scholar
  76. Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. HESS 10:849–859Google Scholar
  77. Schöniger A, Nowak W, Hendricks Franssen H-J (2012) Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography. Water Resour Res 48(4). doi: 10.1029/2011WR010462
  78. Schwientek M, Rügner H, Beckingham B, Kuch B, Grathwohl P (2013a) Integrated monitoring of transport of persistent organic pollutants in contrasting catchments. Env Poll, http://dx.doi.org/10.1016/j.envpol.2012.09.004
  79. Schwientek M, Osenbrück K, Fleischer M (2013b) Investigating hydrological drivers of nitrate export dynamics in two agricultural catchments in Germany using high-frequency data series. Environ Earth Sci (in revision)Google Scholar
  80. Schwitalla T, Bauer H-S, Wulfmeyer V, Aoshima F (2011) High-resolution simulation over central Europe: assimilation experiments during COPS IOP 9c. Q J R Meteorol Soc 137(S1):156–175Google Scholar
  81. Selle B, Rink K, Kolditz O (2013) Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in south-western Germany. Environ Earth Sci 69(2) (accepted)Google Scholar
  82. Smith JWN, Surridge BWJ, Haxton TH, Lerner DN (2009) Pollutant attenuation at the groundwater-surface water interface: a classification scheme and statistical analysis using national-scale nitrate data. J Hydrol 369:392–402CrossRefGoogle Scholar
  83. Spanoudaki K, Stamou AI, Nanou-Giannarou A (2009) Development and verification of a 3-D integrated surface water–groundwater model. J Hydrol 375:410–427CrossRefGoogle Scholar
  84. Sudicky E, Jones J, Park Y, Brookfield A, Colautti D (2008) Simulating complex flow and transport dynamics in an integrated surface-subsurface modeling framework. Geosci J 12(2):107–122CrossRefGoogle Scholar
  85. Sulis M, Meyerhoff SB, Paniconi C, Maxwell RM, Putti M, Kollet SJ (2010) A comparison of two physics-based numerical models for simulating surface water-groundwater interactions. Adv Water Resour 33(4):456–467CrossRefGoogle Scholar
  86. Sulis M, Paniconi C, Rivard C, Harvey R, Chaumont D (2011) Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model. Water Res. Research 47 W01513. doi: 10.1029/2010WR009167
  87. United Nations (2012) World Water Development Report, 4th edition: managing water under uncertainty and risk. United Nations, New YorkGoogle Scholar
  88. USGS (2007) Water-quality assessment of the high plains aquifer, 1999–2004 In: McMahon PB, Dennehy KF, Bruce BW, Gurdak JJ, Qi SL (eds) National water-quality assessment program, Professional Paper 1749Google Scholar
  89. Vogt T, Hoehn E, Schneider P, Freund A, Schirmer M, Cirpka OA (2010a) Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Adv Water Resour 33(11):1296–1308. doi: 10.1016/j.advwatres.2010.02.007 CrossRefGoogle Scholar
  90. Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010b) Estimation of seepage rates in a losing stream by fiber-optic high-resolution vertical temperature profiling. J Hydrol 380(1–2):154–164. doi: 10.1016/j.jhydrol.2009.10.033 CrossRefGoogle Scholar
  91. Vörösmarty CJ, Green PA, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRefGoogle Scholar
  92. Vrugt JA, Robinson BA (2007) Improved evolutionary optimization from genetically adaptive multimethod search. Proc Nat Acad Sci USA 104:708–711. doi: 10.1073/pnas.0610471104 CrossRefGoogle Scholar
  93. Warrach-Sagi K, Wulfmeyer V (2010) Streamflow data assimilation for soil moisture analysis. Geosci Model Dev 3:1–12CrossRefGoogle Scholar
  94. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2012) Evaluation of a CORDEX-Europe simulation based on the WRF-NOAH Model System: precipitation in Germany. Clim Dyn (in revision)Google Scholar
  95. Wöhling T, Vrugt JA (2011) Multi-response multi-layer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resources Research 47:doi: 10.1029/2010WR009265
  96. Wöhling T, Bidwell VJ, Barkle GF (2012a) Dual-tracer, non-equilibrium mixing cell modelling and uncertainty analysis for unsaturated bromide and chloride transport. J Cont Hydrol. doi: 10.1016/j.jconhyd.2012.08.001
  97. Wöhling T, Gayler S, Ingwersen J, Streck T, Vrugt JA, Priesack E (2012b) Multi-objective calibration of coupled soil–vegetation–atmosphere models. In: Models—repositories of knowledge. Proceedings Model CARE 2011, September 19–22, 2011, Vol 355. IAHS Publ, Leipzig, Germany, pp 357–363Google Scholar
  98. Wöhling T, Samaniego L, Kumar R (2013) Evaluating multiple performance criteria to calibrate distributed hydrological models of the upper Neckar catchment. Environ Earth Sci 69(2). doi: 10.1007/s12665-013-2306-2
  99. Wollschläger U, et mult. (2013) The Bode Catchment as part of the TERENO Harz/Central German Lowland Observatory: a platform for integrated interdisciplinary hydrological research. Environ Earth Sci (to be submitted)Google Scholar
  100. World Economic Forum Water Initiative (2009) Managing our future water needs for agriculture, industry, human health and the environment. Draft for Discussion—Meeting of the World Economic Forum, January 2009Google Scholar
  101. Wulfmeyer V, et mult. (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and first highlights. COPS Special Issue of the Q. J. R. Meteorol Soc 137:3–30Google Scholar
  102. Wulfmeyer V, Bauer H-S, Grzeschik M, Behrendt A, Vandenberghe F, Browell EV, Ismail S, Ferrare R (2006) 4-dimensional variational assimilation of water-vapor differential absorption lidar data: the first case study within IHOP_2002. Mon Wea Rev 134:209–230CrossRefGoogle Scholar
  103. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, Frenzel M, Schwank M et al (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973CrossRefGoogle Scholar
  104. Zimmermann JB, Mihelcic JR, Smith J (2008) Global stressors on water quality and quantity. Environ Sci Technol 42(12):4247–4254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Grathwohl
    • 1
    • 2
  • Hermann Rügner
    • 1
  • Thomas Wöhling
    • 1
  • Karsten Osenbrück
    • 1
  • Marc Schwientek
    • 1
  • Sebastian Gayler
    • 1
  • Ute Wollschläger
    • 1
    • 7
  • Benny Selle
    • 1
  • Marion Pause
    • 1
  • Jens-Olaf Delfs
    • 1
  • Matthias Grzeschik
    • 1
  • Ulrich Weller
    • 1
  • Martin Ivanov
    • 1
  • Olaf A. Cirpka
    • 1
    • 2
  • Ulrich Maier
    • 2
  • Bertram Kuch
    • 3
  • Wolfgang Nowak
    • 4
  • Volker Wulfmeyer
    • 1
    • 5
  • Kirsten Warrach-Sagi
    • 5
  • Thilo Streck
    • 1
    • 6
  • Sabine Attinger
    • 1
    • 7
  • Lars Bilke
    • 7
  • Peter Dietrich
    • 1
    • 2
    • 7
  • Jan H. Fleckenstein
    • 1
    • 7
  • Thomas Kalbacher
    • 7
  • Olaf Kolditz
    • 1
    • 7
  • Karsten Rink
    • 7
  • Luis Samaniego
    • 7
  • Hans-Jörg Vogel
    • 1
    • 7
  • Ulrike Werban
    • 7
  • Georg Teutsch
    • 7
  1. 1.Water and Earth System Science Competence Cluster (WESS)TübingenGermany
  2. 2.Center of Applied GeoscienceEberhard Karls University, TübingenTübingenGermany
  3. 3.Institute of Sanitary EngineeringWater Quality and Solid Waste Management, University of StuttgartStuttgartGermany
  4. 4.Institute for Modeling Hydraulic and Environmental SystemsUniversity of StuttgartStuttgartGermany
  5. 5.Institute of Physics and MeteorologyUniversity of HohenheimStuttgartGermany
  6. 6.Institute of Soil Science and Land EvaluationUniversity of HohenheimStuttgartGermany
  7. 7.UFZ-Helmholtz-Centre for Environmental ResearchLeipzigGermany

Personalised recommendations