Advertisement

Environmental Earth Sciences

, Volume 69, Issue 5, pp 1751–1761 | Cite as

Performance of limestones laden with mixed salt solutions of Na2SO4–NaNO3 and Na2SO4–K2SO4

  • Hilde De ClercqEmail author
  • Maja Jovanović
  • Kirsten Linnow
  • Michael Steiger
Original Article

Abstract

The behaviour of two types of limestones having a different porosity, Maastricht and Euville limestone, laden with aqueous solutions of equimolar mixtures of sodium sulphate/sodium nitrate or sodium sulphate/potassium sulphate was investigated. At 50 % RH, the efflorescences on Maastricht samples during the first 30 h of drying consisted of similar amounts of thenardite and darapskite in case of an equimolar mixture of sodium sulphate/sodium nitrate while those on Euville samples under the same conditions contained mainly darapskite. After drying at 20 °C and 85 % RH, thenardite, formed through the precipitation and dehydration of mirabilite, was mostly detected in the efflorescences on both Maastricht and Euville samples. Re-wetting by increasing the RH from 50 to 85 % resulted in substantial damage on Maastricht stone laden with an equimolar mixture of sodium sulphate/sodium nitrate as a consequence of high supersaturation of mirabilite. In case of a contamination with equimolar amounts of sodium sulphate and potassium sulphate, the efflorescence on both limestones during drying at 50 % RH contained predominantly aphthitalite. The observed crystallisation behaviour is compared to the theoretical behaviour. The results indicate a strong influence of stone properties on the crystallisation behaviour of salt mixtures.

Keywords

Limestone Salt crystallisation Sodium sulphate Binary salt mixture Darapskite Aphthitalite 

References

  1. Benavente D, Cueto N, Matínez-Martínez J, García del Cura MA, Caňaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224CrossRefGoogle Scholar
  2. Charola AE, Lewin SZ (1979) Efflorescences on building stones—SEM in the characterization and elucidation of the mechanisms of formation. Scan Electron Microsc 79(I):379–387Google Scholar
  3. Chrétien A (1929) Étude du système quaternaire. Eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Ann Chim 12:9–155Google Scholar
  4. De Clercq H (2008a) Behaviour of limestone contaminated with binary mixtures of sodium sulphate and treated with a water repellent. Restoration of Buildings and Monuments 14:357–364Google Scholar
  5. De Clercq H (2008b) The effect of other salts on the crystallization damage to stone caused by sodium sulphate. In: Proceedings of the international conference on salt weathering on buildings and stone sculptures, Denmark, 22–24 October 2008, Technical University of Denmark—Department of Civil Engineering, Lyngby, pp 307–317Google Scholar
  6. De Witte E (coordinator) (2002) EU project salt compatibility of surface treatments (SCOST), Contract ENV4-CT98-0710, KIK-IRPAGoogle Scholar
  7. Diaz Gonçalves T, Pel L, Delgado Rodrigues J (2007) Drying of salt-contaminated masonry: MRI laboratory monitoring. Environ Geol 52:293–302CrossRefGoogle Scholar
  8. Dubelaar CW, Dusar M, Dreesen R, Felder WM, Nijland TG (2006) Maastricht limestone: a regionally significant building stone in Belgium and the Netherlands. Extremely weak yet time-resistant. In: Fort R, de Buergo MA, Gomez-Heras M, Vazquez-Calvo C (eds) Proceedings of the international heritage weathering and conservation conference. Taylor & Francis Group, London, pp 9–14Google Scholar
  9. Dusar M, Dreesen R, De Naeyer A (2009) Natuursteen in Vlaanderen. Kluwer, MechelenGoogle Scholar
  10. Espinosa Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestones. Environ Geol 56:605–621CrossRefGoogle Scholar
  11. Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52:187–203CrossRefGoogle Scholar
  12. Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:229–237CrossRefGoogle Scholar
  13. Gomez-Heras M, Fort F (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ Geol 52:259–267CrossRefGoogle Scholar
  14. Goudie AS (1977) Sodium sulphate weathering and the disintegration of Mohenjo-Daro, Pakistan. Earth Surf Process 2:75–86CrossRefGoogle Scholar
  15. Grassegger G, Schwarz H-J (2009) Salze und Salzschäden an Bauwerken. In: Schwarz H-J, Steiger M (eds) Salzschäden an Kulturgütern. Ri-Con, Hannover, pp 6–21Google Scholar
  16. Grossi CM, Esbert RM, Suárez del Río LM, Montoto M, Laurenzi-Tabasso M (1997) Acoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud Conserv 42:115–125CrossRefGoogle Scholar
  17. Hall C, Hoff WD, Nixon MR (1984) Water movement in porous building materials—VI. Evaporation and drying in brick and block materials. Build Environ 19:13–20CrossRefGoogle Scholar
  18. Holtkamp MHPC, Heijnen WMM (1991) The mineral darapskite in the efflorescence on two Dutch churches. Stud Conserv 36:175–178CrossRefGoogle Scholar
  19. Klemm W, Siedel H (2002) A rapid method for the determination of cation exchange capacities of sandstones: preliminary data. Geol Soc Spec Publ 205:419–429CrossRefGoogle Scholar
  20. Larsen PK (2007) The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ Geol 52:375–383Google Scholar
  21. Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature controlled X-ray diffraction. Anal Chem 78:4683–4689CrossRefGoogle Scholar
  22. Linnow K, Steiger M, Lemster C, De Clercq H, Jovanović M (2012) In situ Raman observation of the crystallization in NaNO3–Na2SO4–H2O solution droplets. Environ Earth Sci. doi: 10.1007/s12665-012-1997-0
  23. Nord AG (1992) Efflorescence salts on weathered building stone in Sweden. GFF 114:423–429CrossRefGoogle Scholar
  24. Novak GA, Colville AA (1989) Efflorescent mineral assemblages associated with cracked and degraded residential concrete foundations in southern California. Cem Concr Res 19:1–6CrossRefGoogle Scholar
  25. Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534CrossRefGoogle Scholar
  26. Roekens E, Leysen E, Stulens E, Philippaerts J, Van Grieken R (1988) Weathering of Maastricht Limestone used in the construction of historical buildings in Limburg, Belgium. In: Ciabach J (ed) Proceedings of the 6th international congress on deterioration and conservation of stone. Nicholas Copernicus University Press Department, Torun, pp 45–56Google Scholar
  27. Sawdy A, Heritage A (2007) Evaluating the influence of mixture composition on the kinetics of salt damage in wall paintings using time laps video imaging with direct data annotation. Environ Geol 52:303–315CrossRefGoogle Scholar
  28. Silcock HL (1979) Solubilities of inorganic and organic compounds. Ternary and multicomponent systems of inorganic substances, vol 3. Pergamon Press, OxfordGoogle Scholar
  29. Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306CrossRefGoogle Scholar
  30. Steiger M, Kiekbusch J, Nicolai A (2008) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Construct Build Mater 22:1841–1850CrossRefGoogle Scholar
  31. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, pp 227–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hilde De Clercq
    • 1
    Email author
  • Maja Jovanović
    • 1
  • Kirsten Linnow
    • 2
  • Michael Steiger
    • 2
  1. 1.Royal Institute for Cultural Heritage (KIK-IRPA)BrusselsBelgium
  2. 2.Department of ChemistryUniversity of Hamburg, Inorganic and Applied ChemistryHamburgGermany

Personalised recommendations