Advertisement

Environmental Earth Sciences

, Volume 69, Issue 5, pp 1609–1620 | Cite as

In situ Raman observation of the crystallization in NaNO3–Na2SO4–H2O solution droplets

  • Kirsten Linnow
  • Michael Steiger
  • Christine Lemster
  • Hilde De Clercq
  • Maja Jovanović
Original Article

Abstract

Several double salts have been detected in building materials and most of these salts are incongruently soluble compounds. In contrast to single salts, however, no systematic investigations of the crystallization behavior and deleterious effects of incongruently soluble double salts exist. To assess the damage potential of these salts, a systematic investigation of their highly complex behavior is desirable. This paper deals with the crystallization behavior of various solids in the ternary mixed NaNO3–Na2SO4 system including the formation of the double salt darapskite, Na3NO3SO4·H2O. The crystallization sequence during droplet evaporation experiments at room conditions was determined using Raman and polarization microscopy. The basic idea of this research is to use deviations of the crystallization sequence of a salt or a mixed salt solution from the equilibrium pathway as an indicator to detect the degree of supersaturation. The observed crystallization pathway includes the formation of the metastable phases Na2SO4(III), Na2SO4(V) and darapskite. The experimental observations are discussed on the basis of the NaNO3–Na2SO4–H2O phase diagram and the results provide evidence for crystal growth from highly supersaturated solutions in both systems. If the crystals growing under these conditions are confined, these supersaturations result in substantial crystallization pressures.

Keywords

Salt crystallization Double salts Raman microscopy Metastable phases Crystallization pressure 

Notes

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG). We are grateful to Anne Gönke Huesmann for synthesizing darapskite and to Alexander Kadenkin for performing the Raman measurements of the reference materials.

References

  1. Arnold A, Zehnder K (1991) Monitoring wall paintings affected by soluble salts. In: Cather S (ed) The conservation of wall paintings. The Getty Conservation Institute, Los Angeles, pp 103–135Google Scholar
  2. Balboni E, Espinosa-Marzal RM, Doehne E, Scherer GW (2011) Can drying and re-wetting of magnesium sulfate salts lead to damage of stone? Environ Earth Sci 63:1463–1473CrossRefGoogle Scholar
  3. Brooker MH (1978) Raman spectroscopic investigations of structural aspects of the different phases of lithium sodium and potassium nitrate. J Phys Chem Solids 39:657–667CrossRefGoogle Scholar
  4. Cardell C, Benavente D, Rodríguez Gordillo J (2008) Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Mater Charact 59:1371–1385CrossRefGoogle Scholar
  5. Charola AE, Lewin SZ (1979) Efflorescences on building stones—SEM in the characterization and elucidation of the mechanisms of formation. Scan Electron Microsc 79(I):379–387Google Scholar
  6. Choi B-K, Lockwood DJ (1989) Raman spectrum of Na2SO4 (phase V). Solid State Commun 72:133–137CrossRefGoogle Scholar
  7. Choi B-K, Labbé HJ, Lockwood DJ (1990) Raman spectrum of Na2SO4 (phase III). Solid State Commun 74:109–113CrossRefGoogle Scholar
  8. Chretien A (1929) Étude du système quaternaire. Eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Ann Chim 12:9–155Google Scholar
  9. Davies ED, Sandford WF (1975) Solid state vibrational spectroscopy. Part II. A vibrational and differential scanning calorimetry study of the polymorphism of sodium and potassium sulphates. Dalton Trans 1975:1912–1915Google Scholar
  10. De Clercq H (2008) Behaviour of limestone contaminated with binary mixtures of sodium sulphate and treated with a water repellent. Int J Restor Build Monum 14:357–364Google Scholar
  11. De Clercq H, Jovanovic M, Linnow K, Steiger M (2012) Performance of limestone laden with Na2SO4–NaNO3 and Na2SO4–K2SO4 mixtures. Environ Earth Sci. doi: 10.1007/s12665-012-2017-0
  12. Ericksen GE, Mrose ME (1970) Mineralogical studies of the nitrate deposits of Chile. II. Darapskite, Na3(NO3)(SO4)·H2O. Am Min 55:1500–1517Google Scholar
  13. Espinosa Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56:605–621CrossRefGoogle Scholar
  14. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454CrossRefGoogle Scholar
  15. Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:229–237CrossRefGoogle Scholar
  16. Goudie A (1977) Sodium sulphate weathering and the disintegration of Mohenjo-Daro, Pakistan. Earth Surf Process 2:75–86CrossRefGoogle Scholar
  17. Goudie A, Viles H (1997) Salt weathering hazards. Wiley, ChichesterGoogle Scholar
  18. Grossi CM, Esbert RM, Suárez del Río LM, Montoto M, Laurenzi-Tabasso M (1997) Accoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud Conserv 42:115–125CrossRefGoogle Scholar
  19. Hamilton A, Menzies RI (2010) Raman spectra of mirabilite, Na2SO4·10H2O and the rediscovered metastable heptahydrate, Na2SO4·7H2O. J Raman Spectrosc 41:1014–1020CrossRefGoogle Scholar
  20. Hamilton A, Hall C, Pel L (2008) Sodium sulfate heptahydrate: direct observation of crystallization in a porous material. J Phys D Appl Phys 41:212002CrossRefGoogle Scholar
  21. Holkamp MHPC, Heijnen WMM (1991) The mineral darapskite in the efflorescences on two Dutch churches. Stud Conserv 36:175–178CrossRefGoogle Scholar
  22. ICDD (2001) PDF-2 database 2001(Database). International Centre for Diffraction Data, Newton SquareGoogle Scholar
  23. Irish DE, Davis AR (1968) Interactions in alkali metal nitrate solutions. Can J Chem 46:943–951CrossRefGoogle Scholar
  24. James DW, Leong WH (1968) Structure of molten nitrates: temperature variation of Raman spectrum of sodium nitrate. Chem Commun (Lond) 1968:1415–1417CrossRefGoogle Scholar
  25. Jentzsch PV, Ciobota V, Kampe B, Rösch P, Popp J (2011) Origin of salt mixtures and mixed salts in atmospheric particulate matter. J Raman Spectrosc. doi: 10.1002/jrs.3064
  26. Klemm W, Siedel H (2002) A rapid method for the determination of cation exchange capacities of sandstones: preliminary data. Geol Soc Spec Publ 205:419–429CrossRefGoogle Scholar
  27. La Iglesia A, González V, López-Acevedro V, Viedma C (1997) Salt crystallisation in porous construction materials I: estimation of crystallisation pressure. J Cryst Growth 177:111–118CrossRefGoogle Scholar
  28. Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction. Anal Chem 78:4683–4689CrossRefGoogle Scholar
  29. Lòpez-Acevedo V, Viedma C, Gonzalez V, La Iglesia A (1997) Salt crystallisation in porous construction materials II. Mass transport and crystallisation processes. J Cryst Growth 182:103–110CrossRefGoogle Scholar
  30. Massink A (1916) Doppelsalzbildung zwischen Nitraten und Sulfaten in wässeriger Lösung. Z Phys Chem 92:351–380Google Scholar
  31. Montero S (1976) Raman intensities in Na2SO4(V) single crystal. Spectrochim Acta A 32:843–849CrossRefGoogle Scholar
  32. Nord A (1992) Efflorescence salts on weathered building stone in Sweden. GFF 114:423–429CrossRefGoogle Scholar
  33. Novak GA, Colville AA (1989) Efflorescent mineral assemblages associated with cracked and degraded residential concrete foundations in southern California. Cem Concr Res 19:1–6CrossRefGoogle Scholar
  34. Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 75–153Google Scholar
  35. Rijniers LA, Huinink HP, Pel L, Kopinga K (2005) Experimental evidence of crystallization pressure inside porous media. Phys Rev Lett 94:075503CrossRefGoogle Scholar
  36. Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209CrossRefGoogle Scholar
  37. Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534CrossRefGoogle Scholar
  38. Rousseau DL, Miller RE, Leroi GE (1968) Raman spectrum of crystalline sodium nitrate. J Chem Phys 48:3409–3413CrossRefGoogle Scholar
  39. Steiger M (2005) Crystal growth in porous materials—I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  40. Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306CrossRefGoogle Scholar
  41. Steiger M, Linnow K, Juling H, Gülker G, El Jarad A, Brüggerhoff S, Kirchner D (2008a) Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst Growth Des 8:336–343CrossRefGoogle Scholar
  42. Steiger M, Kiekbusch J, Nicolai A (2008b) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Construct Build Mater 22:1841–1850CrossRefGoogle Scholar
  43. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, pp 227–316CrossRefGoogle Scholar
  44. Tsui N, Flatt RJ, Scherer GW (2003) Crystallisation damage by sodium sulfate. J Cult Heritage 4:109–115CrossRefGoogle Scholar
  45. Van Zeggeren F, Storey SH (1970) The computation of chemical equilibrium. University Press, CambridgeGoogle Scholar
  46. Xu B, Vehring R, Schweiger G (1998) Identification of the crystalline phase of single levitated microparticles. J Aerosol Sci 29:S865–S866CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kirsten Linnow
    • 1
  • Michael Steiger
    • 1
  • Christine Lemster
    • 1
  • Hilde De Clercq
    • 2
  • Maja Jovanović
    • 2
  1. 1.Department of Chemistry (Inorganic and Applied Chemistry)University of HamburgHamburgGermany
  2. 2.Royal Institute for Cultural Heritage (KIK-IRPA)BrusselsBelgium

Personalised recommendations