Environmental Earth Sciences

, Volume 68, Issue 7, pp 2085–2097 | Cite as

The role of geological heterogeneity and variability in water infiltration on non-aqueous phase liquid migration

  • Zhibing Yang
  • Hanna Zandin
  • Auli Niemi
  • Fritjof Fagerlund
Original Article

Abstract

This study investigates the influence of two factors—geological heterogeneity and variability in water infiltration—on non-aqueous phase liquid (NAPL) migration in the unsaturated zone. NAPL migration under three-phase flow conditions resulting from a ground surface spill is modeled for multiple heterogeneous realizations of a porous medium with various water infiltration scenarios. Increased water infiltration before the spill has two counteracting effects: NAPL relative permeability (krn) increases with increasing water saturation (Sw) for a given NAPL saturation, while higher Sw in the soil near the NAPL source zone leads to less NAPL mass infiltration. It is found that the former effect is overwhelmed by the latter effect, the net effect being that with longer infiltration durations before the spill, both the infiltrated NAPL mass and the depth of the front migration decrease. Simulation results also show strong effect of the medium heterogeneity. Results suggest that total infiltrated mass, front depth and plume spread increase with an increasing standard deviation of log-permeability. Also variability in modeling results among realizations is largely impacted by the log-permeability standard deviation. Spatial correlation in permeability also strongly influences NAPL infiltration. An increase in the isotropic correlation length from 0.75 to 1.5 m leads to a decrease in total infiltrated mass, plume migration depth as well as vertical spread. Lateral spread in this case is not shown to be affected by the correlation length.

Keywords

Multiphase flow Non-aqueous phase liquid Geological heterogeneity Infiltration Temporal variation 

References

  1. Airaksinen J (1978) Maa- ja pohjavesihydrologia. Kustannusosakeyhtiö Pohjoinen, OuluGoogle Scholar
  2. Ballio F, Guadagnini A (2004) Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resour Res 40(4):W04603CrossRefGoogle Scholar
  3. Birkholzer J, Tsang CF (1997) Solute channeling in unsaturated heterogeneous porous media. Water Resour Res 33(10):2221–2230CrossRefGoogle Scholar
  4. Björklund C, Byman K, Toll M (2001) Olyckors utsläpp och deras miljöpåverkan i relation till de nationella miljömålen. FoU rapport P21-376/01, Räddningsverket, KarlstadGoogle Scholar
  5. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology paper 3, Colorado State University, Fort Collins, ColoradoGoogle Scholar
  6. Burdine NT (1953) Relative permeability calculations from pore size distribution data. Trans Am Inst Min Met Eng 198:71–78Google Scholar
  7. Dekker TJ, Abriola LM (2000a) Influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations. J Contam Hydrol 42(2–4):187–218CrossRefGoogle Scholar
  8. Dekker TJ, Abriola LM (2000b) The influence of field-scale heterogeneity on the surfactant-enhanced remediation of entrapped nonaqueous phase liquids. J Contam Hydrol 42(2–4):219–251CrossRefGoogle Scholar
  9. Deutsch CV, Journel AG (1997) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford university press, OxfordGoogle Scholar
  10. Dressie Z (1987) Recharge and soil water studies using different models and measurement methods. PhD thesis, Uppsala University, SwedenGoogle Scholar
  11. Dury O, Fischer U, Schulin R (1999) A comparison of relative nonwetting-phase permeability models. Water Resour Res 35(5):1481–1493CrossRefGoogle Scholar
  12. Erning K, Grandel S, Dahmke A, Schäfer D (2012) Simulation of DNAPL infiltration and spreading behaviour in the saturated zone at varying flow velocities and alternating subsurface geometries. Environ Earth Sci 65(4):1119–1131. doi:10.1007/s12665-011-1361-9 CrossRefGoogle Scholar
  13. Essaid HI, Herkelrath WN, Hess KM (1993) Simulation of fluid distributions observed at a crude oil spill site incorporating hysteresis, oil entrapment and spatial variability of hydraulic properties. Water Resour Res 29(6):1753–1770CrossRefGoogle Scholar
  14. Fagerlund F, Niemi A (2007) A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills. J Contam Hydrol 89:174–198CrossRefGoogle Scholar
  15. Fagerlund F, Niemi A, Oden M (2006) Comparison of relative permeability—fluid saturation—capillary pressure relations in the modeling of non-aqueous phase liquid infiltration in variably saturated, layered media. Adv Water Resour 29(11):1705–1730CrossRefGoogle Scholar
  16. Fagerlund F, Illangasekare TH, Niemi A (2007a) Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 1. Experimental methods and two-layered reference case. Vadose Zone J 6:471–482CrossRefGoogle Scholar
  17. Fagerlund F, Illangasekare TH, Niemi A (2007b) Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 2. Application to stochastically heterogeneous formations. Vadose Zone J 6:482–495Google Scholar
  18. Fagerlund F, Niemi A, Illangasekare TH (2008) Modeling of NAPL migration in heterogeneous saturated media: effects of hysteresis and fluid immobility in constitutive relations. Water Resour Res 44:W03409CrossRefGoogle Scholar
  19. Falta RW, Pruess K, Finsterle S, Battistelli A (1995) T2VOC User’s Guide. LBL-36400, UC-400. Lawrence Berkeley National Laboratory, University of California, CaliforniaCrossRefGoogle Scholar
  20. Foussereau X, Graham W, Akpoji G, Destouni G, Rao P (2001) Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall. Water Resour Res 37(6):1577–1588CrossRefGoogle Scholar
  21. Grip H, Rodhe A (1985) Vattnets väg från regn till bäck. Forskningsrådens förlagstjänst, KarlshamnGoogle Scholar
  22. Hess KM, Herkelrath WN, Essaid HI (1992) Determination of subsurface fluid contents at a crude-oil spill site. J Contam Hydrol 10(1):75–96CrossRefGoogle Scholar
  23. Illangasekare TH, Ramsey JL, Jensen KH, Butts MB (1995) Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifers. J Contam Hydrol 20(1):1–25CrossRefGoogle Scholar
  24. Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5(1):83–95CrossRefGoogle Scholar
  25. Land CS (1968) Calculation of imbibition relative permeability for two- and three phase flow from rock properties. Soc Pet Eng J Trans Am Inst Min Metall Pet Eng 243:149–156Google Scholar
  26. Lenhard RJ, Oostrom M, Dane JH (2004) A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. J Contam Hydrol 73:283–304CrossRefGoogle Scholar
  27. Massmann J, Shock S, Johannesen L (2000) Uncertainties in cleanup times for soil vapor extraction. Water Resour Res 36(3):679–692CrossRefGoogle Scholar
  28. Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface. J Contam Hydrol 6:107–163CrossRefGoogle Scholar
  29. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:22–513CrossRefGoogle Scholar
  30. Niemi A, Kling T, Kangas M, Ettala M (2003) Heat transport in unsaturated zone thermal energy storage—analysis with two-phase and single-phase models. Heat transport processes in an UZTES experiment. Transp Porous Media 51(1):67–88CrossRefGoogle Scholar
  31. Oostrom M, Lenhard RJ (1998) Comparison of relative permeability-saturation-pressure parametric models for infiltration and redistribution of a light non-aqueous-phase liquid in sandy porous media. Adv Water Resour 21(2):145–157CrossRefGoogle Scholar
  32. Oostrom M, Dane JH, Wietsma TW (2007) A review of multidimensional, multifluid, intermediate-scale experiments: flow behavior, saturation imaging, and tracer detection and quantification. Vadose Zone J 6(3):610–637CrossRefGoogle Scholar
  33. Park G, Jee S, Ko S (2009) Quantification of the saturation degree of nonaqueous phase liquid in the vadose zone using hydrocarbon partitioning tracers. Environ Earth Sci 59(3):511–518. doi:10.1007/s12665-009-0048-y CrossRefGoogle Scholar
  34. Parker JC, Lenhard RJ (1987) A model for hysteretic constitutive relations governing multiphase flow 1. Saturation-pressure relations. Water Resour Res 23(12):2187–2196CrossRefGoogle Scholar
  35. Poulsen M, Kueper BH (1992) A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ Sci Technol 26(5):889–895CrossRefGoogle Scholar
  36. Pruess K, Oldenburg K, Moridis G (1999) TOUGH2 users g guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory. University of California, BerkeleyGoogle Scholar
  37. Rathfelder K, Abriola LM (1998) The influence of capillarity in numerical modeling of organic liquid redistribution in two-phase systems. Adv Water Resour 21(2):159–170CrossRefGoogle Scholar
  38. Rhee S, Kang J, Park J (2011) Partitioning tracer method for quantifying the residual saturation of refined petroleum products in saturated soil. Environ Earth Sci 64(8):2059–2066. doi:10.1007/s12665-011-1028-6 CrossRefGoogle Scholar
  39. Schroth MH, Istok JD, Selker JS, Oostrom M, White MD (1998) Multifluid flow in bedded porous media: laboratory experiments and numerical simulations. Adv Water Resour 22(2):169–183CrossRefGoogle Scholar
  40. Van Geel PJ, Roy SD (2002) A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship. J Contam Hydrol 58:79–110CrossRefGoogle Scholar
  41. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zhibing Yang
    • 1
  • Hanna Zandin
    • 1
    • 2
  • Auli Niemi
    • 1
  • Fritjof Fagerlund
    • 1
  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.WSP EnvironmentalStockholmSweden

Personalised recommendations