Environmental Earth Sciences

, Volume 68, Issue 6, pp 1631–1646 | Cite as

On the inclusion of ground-based gravity measurements to the calibration process of a global rainfall-discharge reservoir model: case of the Durzon karst system (Larzac, southern France)

  • Naomi Mazzilli
  • Hervé Jourde
  • Thomas Jacob
  • Vincent Guinot
  • Nicolas Le Moigne
  • Marie Boucher
  • Konstantinos Chalikakis
  • Hélène Guyard
  • Anatoly Legtchenko
Original Article


This work examines the relevance of the inclusion of ground-based gravity data in the calibration process of a global rainfall-discharge reservoir model. The analysis is performed for the Durzon karst system (Larzac, France). The first part of the study focuses on the hydrological interpretation of the ground-based gravity measurements. The second part of the study investigates further the information content of the gravity data with respect to water storage dynamics modelling. The gravity-derived information is found unable to either reduce equifinality of the single-objective, discharge-based model calibration process or enhance model performance through assimilation.


Karst aquifer Conceptual reservoir model Model calibration Soft data Ground-based gravity monitoring Epikarst 



This work was supported by a PhD grant from the French Ministère de l’Éducation Nationale et de la Recherche (allocation couplée number 30368-2008). Geodetic Data were monitored within the framework of a project funded by the Agence Nationale à à la Recherche (ANR), under the program ECCO Hydrologie et Géodésie driven by N. Florsch. The authors wish to thank the “Parc naturel régional des Grands Causses” for the discharge data monitored at the Durzon spring and Météo France for the rainfall data recorded at the “Le Caylar” meteorological station. Thanks are also addressed to Dr Bailly-Comte for its careful reading of the early draft of this paper.


  1. Avias J (1995) Gestion active de l’exsurgence karstique de la source du Lez. Hydrogéologie 1:113–127Google Scholar
  2. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrol J 13(1):148–160. doi: 10.1007/s10040-004-0402-9 Google Scholar
  3. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi: 10.1016/j.jhydrol.2005.07.007 CrossRefGoogle Scholar
  4. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298. doi: 10.1002/hyp.3360060305 CrossRefGoogle Scholar
  5. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(19):11–29. doi: 10.1016/S0022-1694(01)00421-8 CrossRefGoogle Scholar
  6. Boucher M, Guyard H, Chalikakis K, Legtchenko A (2010) Suivi des variations temporelles du stock d’eau dans la zone non saturée du bassin versant karstique du Durzon (Larzac, Hérault-Aveyron) par la méthode RMP. Synthèse des 3 premières campagnes de mesure (2009–2010). Tech. rep., ANR HydroGéodésie-2Google Scholar
  7. Bruxelles L (2001) Dé pots et altérites des plateaux du Larzac central: Causses de l’Hospitalet et de Campestre (Aveyron, Gard, Hérault). Évolution morphogénique, consequences géologiques et implications pour l’amenagement. PhD thesis, Université de ProvenceGoogle Scholar
  8. Bruxelles L, Caubel A (1996) Lacs temporaires et circulations de surface sur le causse de l’Hospitalet du Larzac en 1996: Fonctionnement et implications géomorphologiques. Bulletin de la Société Languedocienne de Géographie (3–4):253–288.
  9. Contractor DN, Jenson JW (2000) Simulated effect of vadose infiltration on water levels in the Northern Guam Lens Aquifer. J Hydrol 229(3–4):232–254. doi: 10.1016/S0022-1694(00)00157-8 CrossRefGoogle Scholar
  10. Creutzfeldt B, Güntner A, Vorogushyn S, Merz B (2010) The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrol Earth Syst Sci 7(2):2221–2260.
  11. Ebel BA, Loague K (2006) Physics-based hydrologic-response simulation: seeing through the fog of equifinality. Hydrol Process 20(13):2887–2900. doi: 10.1002/hyp.6388 CrossRefGoogle Scholar
  12. El-Hakim M, Bakalowicz M (2007) Significance and origin of very large regulating power of some karst aquifers in the Middle East. Implication on karst aquifer classification. J Hydrol 333(2–4):329–339. doi: 10.1016/j.jhydrol.2006.09.003 CrossRefGoogle Scholar
  13. Fleury P (2005) Sources sous-marines et aquifères karstiques c?tiers méditerranéens. Fonctionnement et caractérisation. PhD thesis, Université Paris VI, Pierre et Marie Curie.
  14. Guinot V, Cappelaere B, Delenne C, Ruelland D (2011) Objective functions for conceptual hydrological model calibration: theoretical analysis of distance- and weak form-based functions. J Hydrol 401(1–2):1–13. doi: 10.1016/j.jhydrol.2011.02.004 CrossRefGoogle Scholar
  15. Hernandez-Santana V, Martinez-Fernandez J, Moran C, Cano A (2008) Response of Quercus pyrenaica (melojo oak) to soil water deficit: a case study in Spain. Eur J Forest Res 127(5):369–378. doi: 10.1007/s10342-008-0214-x CrossRefGoogle Scholar
  16. Jacob T (2009) Apport de la gravimétrie et de l’inclinométrie ? l’hydrologie karstique. PhD thesis, Université Montpellier II.
  17. Jacob T, Bayer R, Chery J, Jourde H, Le Moigne N, Boy JP, Hinderer J, Luck B, Brunet P (2008) Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac plateau (Southern France). J Hydrol 359:105–117. doi: 10.1016/j.jhydrol.2008.06.020 CrossRefGoogle Scholar
  18. Jacob T, Chery J, Bayer R, Le Moigne N, Boy JP, Vernant P, Boudin F (2009) Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophys J Int 177(2):347–360. doi: 10.1111/j.1365-246X.2009.04118.x CrossRefGoogle Scholar
  19. Jacob T, Bayer R, Chery J, Le Moigne N (2010a) Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. J Geophys Res 115(B6):B06,402. doi: 10.1029/2009JB006616
  20. Jacob T, Chéry J, Boudin F, Bayer R (2010b) Monitoring deformation from hydrologic processes in a karst aquifer using long-baseline tiltmeters. Water Resour Res 46(9): W09,542. doi: 10.1029/2009WR008082
  21. Jourde H, Roesch A, Guinot V, Bailly-Comte V (2007) Dynamics and contribution of karst groundwater to surface flow during mediterranean flood. Environ Geol 51:725–730. doi: 10.1007/s00254-006-0386-y CrossRefGoogle Scholar
  22. Kuczera G, Mroczkowski M (1998) Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour Res 34(6):1481–1489. doi: 10.1029/98WR00496 CrossRefGoogle Scholar
  23. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32(2):114–123. doi: 10.1007/s002540050200 CrossRefGoogle Scholar
  24. Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50(1–2):3–19. doi: 10.1016/S0926-9851(02)00127-1 CrossRefGoogle Scholar
  25. Maillet E (1906) La vidange des systèmes de réservoirs. Annales Ponts et Chaussées, Mém et Doc 21Google Scholar
  26. Mazzilli N, Guinot V, Jourde H (2012) Sensitivity analysis of conceptual model calibration to initialisation bias. Application to karst spring discharge models. Adv Water Resour. doi: 10.1016/j.advwatres.2012.03.020
  27. Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models. Part I—a discussion of principles. J Hydrol 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  28. Otieno DO, Schmidt MWT, Kurz-Besson C, Do Vale RL, Pereira JS, Tenhunen JD (2007) Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Tree Physiol 27(8):1179–1187. doi: 10.1093/treephys/27.8.1179 CrossRefGoogle Scholar
  29. Oudin L, Michel C, Anctil F (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1—can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs?. J Hydrol 303(1–4):275–289. doi: 10.1016/j.jhydrol.2004.08.025 CrossRefGoogle Scholar
  30. Oudin L, Perrin C, Mathevet T, Andreassian V, Michel C (2006) Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J Hydrol 320(1–2):62–83. doi: 10.1016/j.jhydrol.2005.07.016 CrossRefGoogle Scholar
  31. Perrin C, Michel C, Andreassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242(3–4):275–301. doi: 10.1016/S0022-1694(00)00393-0 CrossRefGoogle Scholar
  32. Perrin J, Jeannin PY, Zwahlen F (2003) Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: A field study at Milandre test site, Swiss Jura. Hydrol J 11(6):673–686. doi: 10.1007/s10040-003-0281-5 Google Scholar
  33. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432. doi: 10.1111/j.1745-6584.1995.tb00299.x CrossRefGoogle Scholar
  34. Ricard J, Bakalowicz M (1996) Connaissance, aménagement et protection des ressources en eau du Larzac septentrional, Aveyron (France) Tech. Rep. R38953, BRGM.
  35. Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res 38(11):1241. doi: 10.1029/2001WR000978 CrossRefGoogle Scholar
  36. Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New YorkGoogle Scholar
  37. Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the high plains aquifer, central United States. Water Resour Res 45:W05,410. doi: 10.1029/2008WR006892
  38. Thornthwaite C (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. Google Scholar
  39. Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non linear hysteretic conceptual model. J Hydrol 397(3–4):250–262. doi: 10.1016/j.jhydrol.2010.12.001 CrossRefGoogle Scholar
  40. Vache KB, McDonnell JJ (2006) Process-based strategies for model structural improvement and reduction of model prediction uncertainty. In: Predictions in ungauged basins: promise and progress. Proceedings of symposium S7 held during the 7th IAHS Scientific Assembly at Foz do Igua?u, Brazil (April 3–9, 2005), IAHS, vol 303, pp 30–37.
  41. Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. J Clim 8:2716–2748 doi: 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2 Google Scholar
  42. Vrugt JA, Braak CJFt, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. doi: 10.1029/2007WR006720 CrossRefGoogle Scholar
  43. Wagener T, Gupta H (2005) Model identification for hydrological forecasting under uncertainty. Stoch Env Res Risk Assess 19(6):378–387. doi: 10.1007/s00477-005-0006-5 CrossRefGoogle Scholar
  44. Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 277(1–2):166–173. doi: 10.1016/j.epsl.2008.10.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Naomi Mazzilli
    • 1
  • Hervé Jourde
    • 1
  • Thomas Jacob
    • 2
  • Vincent Guinot
    • 1
  • Nicolas Le Moigne
    • 5
  • Marie Boucher
    • 3
  • Konstantinos Chalikakis
    • 4
  • Hélène Guyard
    • 3
  • Anatoly Legtchenko
    • 3
  1. 1.HydroSciences Montpellier, UMR CNRS/IRD/UM2 5569Montpellier Cedex 5France
  2. 2.BRGMOrléans CedexFrance
  3. 3.Laboratoire d’Étude des Transferts en Hydrologie et Environnement, UMR 5564 CNRS/G-INP/IRD/UJFGrenobleFrance
  4. 4.Laboratoire d’Hydrogéologie d’Avignon, UMR 1114 UAPV/INRAAvignonFrance
  5. 5.Géosciences Montpellier, UMR 5243 CNRS/UM2MontpellierFrance

Personalised recommendations