Advertisement

Environmental Earth Sciences

, Volume 68, Issue 2, pp 429–437 | Cite as

Effect of the addition of granitic powder to an acidic soil from Galicia (NW Spain) in comparison with lime

  • Benita Silva
  • Remigio ParadeloEmail author
  • Nuria Vázquez
  • Eduardo García-Rodeja
  • María Teresa Barral
Original Article

Abstract

High amounts of granitic powders are produced in the granite industry in Galicia (NW Spain), whose accumulation could pose environmental threats, at least locally. Due to its natural alkalinity, the powder could be used to correct the acidity of soils or mining residues, where it would act at the same time as a source of plant nutrients. A greenhouse experiment was conducted to test the growth of Italian ryegrass on an acid soil amended with different rates of granitic powder (2.5, 5 and 10 %). Soil amended with lime or with lime in combination with P–K fertilizer, and the granitic powder alone, was used for comparison, with the unamended soil as control. After a growth period of 14 weeks, the plants were completely removed and washed; dry weight yield was recorded for roots and shoots, and their contents in nutrients and heavy metals were determined. Cation exchange capacity (CEC), pH, total C and N, nutrient elements and heavy metals were also determined in soil samples. The addition of granitic powder ameliorated the soil conditions for plant growth, with increments in soil pH, CEC and available nutrients, as well as a reduction of aluminium saturation. As a consequence, a significant increment in plant yield at increasing granitic powder rates was observed in comparison to the other amendments (up to 75 % higher than in the soil without amendment). The results of this study allow considering granitic powder as a suitable alternative to the traditional lime-based amendments for acid soils.

Keywords

Granite powder Liming Mining wastes Acid soils 

Notes

Acknowledgments

This study was carried out as part of a research project developed through an agreement between the Universidad de Santiago de Compostela and the Asociación de Graniteros de Galicia, and was funded by the Consellería de Industria e Comercio of the Xunta de Galicia.

References

  1. Bakken AK, Gautneb H, Myhr K (1997) The potential of crushed rocks and mine tailings as slow-releasing K fertilizers assessed by intensive cropping with Italian ryegrass in different soil types. Nutr Cycl Agroecosyst 47:41–48CrossRefGoogle Scholar
  2. Bakken AK, Gautneb H, Sveistrup T, Myhr K (2000) Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutr Cycl Agroecosyst 56:53–57CrossRefGoogle Scholar
  3. Barral Silva MT, Silva Hermo B, García-Rodeja E, Vázquez Freire N (2005) Reutilization of granite powder as an amendment and fertilizer for acid soils. Chemosphere 61:993–1002CrossRefGoogle Scholar
  4. Calvo R, Pérez JL (1994) Soils affected by acid mine waters in Galicia (NW Spain). Water Air Soil Pollut 73:247–263CrossRefGoogle Scholar
  5. Calvo RM, Guitián F, Macías F (1981) Aspectos geoquímicos de la alteración de un granito de 2 micas en Galicia. Acta Científica Compostelana 18:287–313Google Scholar
  6. Chesworth W, Macías-Vázquez F, Acquaye D, Thompson E (1983) Agricultural alchemy: stones into bread. Episodes 1983(1):3–7Google Scholar
  7. Chesworth W, Van Straaten P, Semoka JMR (1989) Agrogeology in East Africa: the Tanzania–Canada Project. J Afr Earth Sci 9:357–362CrossRefGoogle Scholar
  8. Coroneos C, Hisinger P, Gilkes RJ (1996) Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fert Res 45:143–152CrossRefGoogle Scholar
  9. FAO (2006) World Reference Base for Soil Resources 2006. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  10. Fraser J, McBride RA (2000) The utility of aggregate processing fines in the rehabilitation of dolomite quarries. Land Degrad Dev 11:1–17CrossRefGoogle Scholar
  11. García-Rodeja E, Silva B, Macías F (1987) Andosols developed from non-volcanic materials in Galicia, NW Spain. J Soil Sci 38:573–591CrossRefGoogle Scholar
  12. Gillman GP (1980) The effect of crushed basalt scoria on the cation exchange properties of a highly weathered soil. Soil Sci Soc Am J 44:465–468CrossRefGoogle Scholar
  13. Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Ed. Pico Sacro, Santiago de CompostelaGoogle Scholar
  14. Guitián F, Muñoz M (1960) Efecto del encalado en los suelos ácidos. An Edafol Agrobiol 19:261–270Google Scholar
  15. Harley AD, Gilkes RJ (2000) Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutr Cycl Agroecosyst 56:11–36CrossRefGoogle Scholar
  16. Hinsinger P, Bolland MDA, Gilkes RJ (1996) Silicate rock powder: effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment. Fert Res 45:69–79CrossRefGoogle Scholar
  17. IGME (Instituto Geológico y Minero de España) (1981) Mapa Geológico 1:50.000. IGME, Madrid, SpainGoogle Scholar
  18. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar
  19. Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant-available micronutrients in soils. Acta Agric Fenn 123:223–232Google Scholar
  20. Leirós MC, Varela MC, Gil F, Trasar MC, Seoane S (1995) Los suelos de la mina. In: Guitián F (ed) Recuperación de las escombreras de la mina de lignitos de Meirama (A Coruña). Universidad de Santiago-Lignitos de Meirama, Santiago de Compostela, pp 125–158Google Scholar
  21. Leonardos OH, Fyfe WS, Kronberg BI (1987) The use of ground rocks in laterite systems: an improvement to the use of conventional soluble fertilizers? Chem Geol 60:361–370CrossRefGoogle Scholar
  22. Lin C, Coleman NT (1960) The measurement of exchangeable aluminium in soils and clays. Soil Sci Soc Am Proc 24:444–446CrossRefGoogle Scholar
  23. Macías F, Calvo R (2001) Los suelos. In: Precedo Ledo A, Sancho Comíns J (eds) Atlas de Galicia. Consellería de Presidencia, Xunta de Galicia, Santiago de Compostela, pp 173–217Google Scholar
  24. Macías F, Calvo R (2008) Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible, Xunta de Galicia, Santiago de CompostelaGoogle Scholar
  25. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  26. Mombiela FA, Mateo ME (1984) Necesidades de cal para praderas en terrenos “a monte”. I) su relación con el Al cambiable en suelos sobre granitos y pizarras de Galicia. An INIA 25:129–143Google Scholar
  27. Monterroso C, Macías F (1998) Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain). Composition and mineral stability. Sci Total Environ 216:121–132CrossRefGoogle Scholar
  28. Muñoz M, Guitián F (1962) La necesidad de cal en los suelos de cultivo gallegos. An Edafol Agrobiol 21:473–480Google Scholar
  29. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of Soil Analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, pp 403–430Google Scholar
  30. Paradelo R, Moldes AB, Barral MT (2008) Characterization of slate processing fines according to parameters of relevance for mine spoil reclamation. Appl Clay Sci 41:172–180CrossRefGoogle Scholar
  31. Peech M, Alexander LT, Dean LA, Reed JF (1947) Methods of soil analysis for soil fertility investigations. USDA CircularGoogle Scholar
  32. Priyono J, Gilkes RJ (2008) High-energy milling improves the effectiveness of silicate rock fertilizers: a glasshouse experiment. Commun Soil Sci Plant Anal 39:358–369CrossRefGoogle Scholar
  33. Sanz-Scovino JI, Rowell DL (1988) The use of potassium fertilizers in the savannah of Colombia. Fert Res 17:71–83CrossRefGoogle Scholar
  34. Suzi T, Othon T (2006) The use of rocks to improve family agriculture in Brazil. An Acad Bras Cienc 78:721–730CrossRefGoogle Scholar
  35. Swanback TR (1950) Granite stone meal as a source of potash for tobacco. Conn AES Bull 536:1–14Google Scholar
  36. Taboada TM, Romero R, García Paz C (1990a) Weathering evolution of a biotite granite (El Pindo, Galicia, NW Spain). In: 2nd international symposium on geochemistry of the Earth’s surface and of mineral formation, Aix-en-Provence, pp 130–132Google Scholar
  37. Taboada TM, Romero R, García Paz C (1990b) Relaciones entre dos índices de alteración: el índice de Parker y el pH de abrasión. In: Actas XVII Congreso Nacional de la Ciencia del Suelo, Badajoz, pp 75–78Google Scholar
  38. Trasar-Cepeda MC, Gil-Sotres F, Guitián-Ojea F (1990) Relation between phosphorus fractions and development of soils from Galicia (NW Spain). Geoderma 27:139–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Benita Silva
    • 1
  • Remigio Paradelo
    • 1
    Email author
  • Nuria Vázquez
    • 1
  • Eduardo García-Rodeja
    • 2
  • María Teresa Barral
    • 1
  1. 1.Departamento de Edafoloxía e Química Agrícola, Facultade de FarmaciaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Departamento de Edafoloxía e Química Agrícola, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations