Environmental Earth Sciences

, Volume 68, Issue 2, pp 355–367 | Cite as

Distribution of polycyclic aromatic hydrocarbons in recent sediments of Sundarban mangrove wetland of India and Bangladesh: a comparative approach

  • Olatz Zuloaga
  • Ailette Prieto
  • Kawser Ahmed
  • Santosh Kumar SarkarEmail author
  • Asokkumar Bhattacharya
  • Mousumi Chatterjee
  • Bhaskar Deb Bhattacharya
  • Kamala Kanta Satpathy
Original Article


The present work is the first attempt to compare the data of a comprehensive study of the origin and distribution of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in surface sediments (<63 μm) from 18 sampling stations, 9 from Sundarban of Bangladesh and 9 from Indian counterpart. Σ19PAHs concentration in sediments showed wide variations from 208.3 to 12,993.1 ng g−1 dry weight in Indian Sundarban, whereas 208.4 to 4,687.9 ng g−1 in the case of Bangladesh. Fluoranthene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene were predominant species for both the countries. The PAH diagnostic ratios indicated that the PAHs in sediments from both the countries were of mixed source of hydrocarbons of both petrogenic and pyrolytic origin. According to the numerical effect-based sediment quality guidelines, the levels of PAHs in the Sundarban wetland of Bangladesh and India should not exert adverse biological effects. The TEQ values calculated for samples from the Bangladesh and Indian Sundarban varied from 13.68 to 1,014.75 and 1.31 to 2,451 ng g−1 d.w. with an average of 221.02 and 358.63 ng g−1, respectively. The overall contamination status of PAH was higher in India than Bangladesh.


Polycyclic aromatic hydrocarbons (PAHs) Sediment India Bangladesh Sundarban 


  1. Barakat AO, Mostafa A, Wade TL, Sweet ST, El Sayed NB (2011) Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar Pollut Bull 62(9):1969–1978CrossRefGoogle Scholar
  2. Bartolomé L, Cortazar E, Raposo JC, Usobiaga A, Zuloaga O, Etxebarria N, Fernández LA (2005) Simultaneous microwave-assisted extraction of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters and nonylphenols in sediments. J Chromatogr A 1068:229–236CrossRefGoogle Scholar
  3. Baumard P, Budzinski H, Garrigues P, Sorbe JC, Burgeot T, Bellocq J (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar Pollut Bull 36:951–960CrossRefGoogle Scholar
  4. Baumard P, Budzinski H, Garrigues P, Dizer H, Hansen PD (1999) Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar Environ Res 47:17–47CrossRefGoogle Scholar
  5. Berner BA Jr, Bryner NP, Wise SA, Mulholland GH, Lao RC, Fingas MF (1990) Polycyclic aromatic hydrocarbon emissions from combustion of crude oil on water. Environ Sci Technol 24:1418–1427CrossRefGoogle Scholar
  6. Bhattacharya A, Sarkar SK (2003) Impact of overexploitation of shellfish: northeastern coast of India. Ambio 32:70–75Google Scholar
  7. Bicego M, Murino V, Pelillo M, Torsello A (2006) Special issue on similarity-based classification. Pattern Recognit 39:1813–1948CrossRefGoogle Scholar
  8. Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sundarban wetlands (Bay of Bengal, India). Chemosphere 73:1129–1137CrossRefGoogle Scholar
  9. Budzinski H, Jones I, Bellock J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97CrossRefGoogle Scholar
  10. Butler JD, Crossley F (1981) Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmos Environ 15:91–94CrossRefGoogle Scholar
  11. Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MVR, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356CrossRefGoogle Scholar
  12. Chatterjee M, Canario J, Sarkar SK, Brancho V, Bhattacharya AK, Saha S (2009) Mercury enrichments in core sediments in Sunderban mangroves, northeastern part of Bay of Bengal and their ecotoxicological significance. Environ Geol 57:1125–1134CrossRefGoogle Scholar
  13. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384CrossRefGoogle Scholar
  14. Colombo JC, Pelletier E, Brochu C, Khalil M, Cataggio JA (1989) Determination of hydrocarbon sources using n-alkanes and polyaromatic hydrocarbon distribution indices. Case study: Rio de la Plata estuary, Argentina. Environ Sci Technol 23:888–894CrossRefGoogle Scholar
  15. Dickhut RM, Canuel EA, Gustafoson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, Macdonald EH (2000) Automative sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640CrossRefGoogle Scholar
  16. Eisma D (1998) Intertidal deposits. River mouths, tidal flats, and coastal lagoons. CRC Press, New YorkGoogle Scholar
  17. FDEP (Florida Department of Environmental Protection) (1994) Florida coastal sediment contaminants atlas. Office of Intergovernmental Programs, TallahasseeGoogle Scholar
  18. Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26Google Scholar
  19. Fu J, Ding Y-H, Li L, Sheng S, Wen T, Yu L-J, Chen W, An S-Q, Zhu H-L (2011) Polycyclic aromatic hydrocarbons and ecotoxicological characterization of sediments from the Huaihe River. China J Environ Monit 13:597–604CrossRefGoogle Scholar
  20. Giuliani S, Sprovieri M, Frignani M, Cu NH, Mugnai C, Bellucci LG, Albertazzi S, Romano S, Feo ML, Marsella E (2008) Presence and origin of polycyclic aromatic hydrocarbon in sediments of nine coastal lagoons in central Vietnam. Mar Pollut Bull 56:1504–1512CrossRefGoogle Scholar
  21. Goodbred SL Jr (2003) Response of Ganges dispersal system to climate change: a source-to sink view since the last interstade. Sediment Geol 162:83–104CrossRefGoogle Scholar
  22. Gschwend PM, Hites RA (1981) Fluxes of the polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim Cosmochim Acta 45:2359–2367CrossRefGoogle Scholar
  23. Hites RA, Laflamme RE, Farrington JW (1977) Sedimentary polycyclic aromatic hydrocarbon: the historical record. Science 198:829–831CrossRefGoogle Scholar
  24. Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC (2004) Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated naphthalenes across Europe. Environ Toxicol Chem 23:1355–1364CrossRefGoogle Scholar
  25. Jones DM, Rowland SJ, Douglas AG, Howells S (1986) An examination of the fate of Nigerian crude oil in surface sediments of the Humber estuary by gas chromatography and gas chromatography–mass spectrometry. Environ Anal Chem 24:227–247CrossRefGoogle Scholar
  26. Kannan K, Johnson-Restrepo B, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environ Sci Technol 39:4700–4706CrossRefGoogle Scholar
  27. Kimbrough KL, Dickhut RM (2006) Assessment of polycyclic aromatic hydrocarbon input to urban wetlands in relation to adjacent land use. Mar Pollut Bull 52(11):1355–1363CrossRefGoogle Scholar
  28. Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrology. Appleton-Century Crafts, New YorkGoogle Scholar
  29. Liao JF (1990) The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. Acta Sci Nat Univ Sunyats (Supp) 9:67–72Google Scholar
  30. Lin T, Qin Y, Zheng B, Li Y, Zhang L, Guo Z (2012) Sedimentary record of polycyclic aromatic hydrocarbons in a reservoir in Northeast China. Environ Pollut 163:256–260CrossRefGoogle Scholar
  31. Liu S, Tao S, Liu W, Liu Y, Dou H, Zhao J, Wang L, Wang J, Tian Z, Gao Y (2007) Atmospheric polycyclic aromatic hydrocarbons in north China: a wintertime study. Environ Sci Technol 41:8256–8261CrossRefGoogle Scholar
  32. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97CrossRefGoogle Scholar
  33. Luo XJ, Mai BX, Yang QS, Fu JM, Sheng GY, Wang ZS (2004) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Mar Pollut Bull 48:1102–1115CrossRefGoogle Scholar
  34. Muel B, Saguem S (1985) Determination of 23 polycyclic aromatic hydrocarbons in atmospheric particulate matter of the Paris area and photolysis by sun light. Int J Environ Anal Chem 19:111–131CrossRefGoogle Scholar
  35. Mukherjee KN (1969) Nature and problems of neo-reclamation in the Sundarbans. Geogr Rev India 31(4):1–9Google Scholar
  36. Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soils and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11CrossRefGoogle Scholar
  37. Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment, sources, fates, and biological effects. Applied Science, LondonGoogle Scholar
  38. Perra G, Pozo K, Guerranti C, Lazzeri D, Volpo V, Corsolini S, Focardi S (2011) Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA). Mar Pollut Bull 62(4):874–877CrossRefGoogle Scholar
  39. Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507CrossRefGoogle Scholar
  40. Qiao M, Wang CX, Huang SB, Wang DH, Wang ZJ (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33CrossRefGoogle Scholar
  41. Raoux C (1991) Modélisation du mécanisme de contamination par des hydrocarbures aromatiques polycycliques (HAP) des sédiments marins côtiers de Méditerranée: conséquences sur la biodisponibilité des HAP dans le milieu marin. PhD Thesis, Nr 565, University bordeaux I, Bordeaux, FranceGoogle Scholar
  42. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79CrossRefGoogle Scholar
  43. Sarkar SK, Franciscovic-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environ Int 30:1089–1098CrossRefGoogle Scholar
  44. Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. J Clean Prod 15:1559–1567CrossRefGoogle Scholar
  45. Sarkar K, Binelli A, Chatterjee M, Bhattacharya BD, Parolini M, Riva C, Jonathan MP (2012) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons (PAHs) in core sediments of Sundarban mangrove wetland, India. Polycycl Aromat Compd 32:1–26CrossRefGoogle Scholar
  46. Sauer TC, Boehm PD (1991) The use of defensible analytical chemical measurements for oil spill natural resource damage assessment. In: Proceedings of the 1991 International Oil Spill Conference, San Diego, CA, March 4–7, USCG, API, and EPA, pp 363–369Google Scholar
  47. Savinov VM, Savinova TN, Matishov GG, Dahle S, Naes K (2003) Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ 306:39–56CrossRefGoogle Scholar
  48. Seruto C, Sapozhnikova Y, Schlenk D (2005) Evaluation of the relationships between biochemical endpoints of PAH exposure and physiological endpoints of reproduction in male California Halibut (Paralichthys californicus) exposed to sediments from a natural oil seep. Mar Environ Res 60:454–465CrossRefGoogle Scholar
  49. Sharif AKM, Mustafa AI, Amin NM, Shafiullah S (1991) Trace metals in tropical marine fish from the Bay of Bengal. Sci Tot Environ 107:135–142CrossRefGoogle Scholar
  50. Sharif AKM, Mustafa AI, Amin NM, Shafiullah S (1993a) Lead and cadmium contents in ten species of tropical marine fish from the Bay of Bengal. Sci Tot Environ 133:193–199CrossRefGoogle Scholar
  51. Sharif AKM, Alamgir M, Mustafa AI, Hossain MA, Amin MN (1993b) Trace element concentration in ten species of freshwater fish of Bangladesh. Sci Tot Environ 138(1–3):177–186Google Scholar
  52. Sicre MA, Marty JC, Saliot A (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ 21:2247–2259CrossRefGoogle Scholar
  53. Simpson CD, Mosi AA, Cullen WR, Reimer KJ (1996) Composition and distribution of polycyclic aromatic hydrocarbons in surficial marine sediments from Kitimat Harbour, Canada. Sci Tot Environ 181(3):265–278CrossRefGoogle Scholar
  54. Snead RE (1985) Pakistan. In: Bird ECF, Schwartz ML (eds) The world’s coastline. Van Nostrand, New York, pp 735–740Google Scholar
  55. Soclo HH (1986) Etude de la distribution des hydrocarbures aromatiques polycycliques dans les sédiments récents. Identification des sources. PhD Thesis, Nr 50, University Bordeaux I, Bordeaux, FranceGoogle Scholar
  56. Ünlü S, Alpar B (2009) Evolution of potential ecological impacts of the bottom sediment from the Gulf of Gemlik; Marmara Sea, Turkey. Bull Environ Contam Toxicol 83:903–906CrossRefGoogle Scholar
  57. Van Metre PC, Mahler BJ (2005) Trends in hydrophobic organic contaminants in urban and Reference Lake sediments across the United States, 1970–2001. Environ Sci Technol 39:5567–5574CrossRefGoogle Scholar
  58. Walker SE, Dickhut RM (2001) Sources of PAHs to sediments of the Elizabeth River, VA. Soil Sediment Contam 10(6):611–632CrossRefGoogle Scholar
  59. Walkey A, Black TA (1934) An estimation Degitijaraff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 37:23–38Google Scholar
  60. Wang MS, Chen SJ, Lai YC, Huang KL, Chang-Chien GP (2010) Characterization of persistent of organic pollutants in ash collected from different facilities of a municipal solid waste incinerator. Aerosol Air Qual Res 10:391–402Google Scholar
  61. Wise SA, Hilpert LR, Rebbert RE, Sander LC, Schantz MM, Chesler SN, May WE (1988) Standard reference materials for the determination of polycyclic aromatic hydrocarbons. Fresenius Z Anal Chem 332:573–582CrossRefGoogle Scholar
  62. Yamashita N, Kannan K, Imagawa T, Villeneuve DL, Hashimoto S, Miyazaki A, Giesy JP (2000) Vertical profile of polychlorinated dibenzo-p-dioxins, dibenzofurans, naphthalenes, biphenyls, polycyclic aromatic hydrocarbons, and alkyphenols in a sediment core from Tokyo Bay, Japan. Environ Sci Technol 35:3560–3567CrossRefGoogle Scholar
  63. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515CrossRefGoogle Scholar
  64. Zuloaga O, Prieto A, Usobiaga A, Sarkar SK, Chatterjee M, Bhattacharya BD, Bhattacharya A, Alam A (2009) Polycyclic aromatic hydrocarbons in intertidal marine bivalves of Sunderban mangrove wetland, India: an approach to bioindicator species. Water Air Soil Pollut 201:305–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Olatz Zuloaga
    • 1
  • Ailette Prieto
    • 1
  • Kawser Ahmed
    • 2
  • Santosh Kumar Sarkar
    • 3
    Email author
  • Asokkumar Bhattacharya
    • 3
  • Mousumi Chatterjee
    • 3
  • Bhaskar Deb Bhattacharya
    • 3
  • Kamala Kanta Satpathy
    • 4
  1. 1.Kimika Analitikoa Saila, Faculty of Science and TechnologyEuskal Herriko Uninbersitatea (UPV/EHU)BilbaoSpain
  2. 2.Ecology, Environment and Climate Change Lab, Department of FisheriesUniversity of DhakaDhakaBangladesh
  3. 3.Department of Marine ScienceUniversity of CalcuttaCalcuttaIndia
  4. 4.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations