Environmental Earth Sciences

, Volume 67, Issue 2, pp 369–384 | Cite as

The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany)

  • Dieter Pudlo
  • Viktor Reitenbach
  • Daniel Albrecht
  • Leonhard Ganzer
  • Ulrich Gernert
  • Joachim Wienand
  • Bernd Kohlhepp
  • Reinhard Gaupp
Special Issue

Abstract

In the framework of the German R&D joint project CLEAN (CO2 large-scale enhanced gas recovery in the Altmark natural gas field), Rotliegend reservoir sandstones of the Altensalzwedel block in the Altmark area (Saxony-Anhalt, central Germany) have been studied to characterise litho- and diagenetic facies, mineral content, geochemical composition, and petrophysical properties. These sands have been deposited in a playa environment dominated by aeolian dunes, dry to wet sand flats and fluvial channel fills. The sediments exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. In sandstones of the damp to wet sandflats, their pristine red colours are preserved and porosity and permeability are only low. Rocks of the aeolian environment and most of the channel fill deposits are preferentially bleached and exhibit moderate to high porosity and permeability. Although geochemical element whole rock content in these rocks is very similar, element correlations are different. Variations in porosity and permeability are mainly due to calcite and anhydrite dissolution and differences in clay coatings with Fe-bearing illitic-chloritic composition exposed to the pore space. Moreover, mineral dissolution patterns as well as compositions (of clays and carbonate) and morphotypes of authigenic minerals (chlorite, illite) are different in red and bleached rocks. Comparison of the geochemical composition and mineralogical features of diagenetically altered sandstones and samples exposed to CO2-bearing fluids in laboratory batch experiments exhibit similar character. Experiments prove an increase in wettability and water binding capacity during CO2 impact.

Keywords

Rotliegend sandstones Diagenesis Bleaching Mineral-geochemistry Petrophysical properties Batch experiments 

Supplementary material

12665_2012_1723_MOESM1_ESM.tif (21.3 mb)
Thin section images of pristine red and bleached Altmark sandstones: (A) in pristine red sandstones clasts are covered by ferrous clay coatings (brownish colours) and intergranular space is filled by early diagenetic formed anhydrite (An) and (not shown) calcite cements-P = (rare observed) pore space (TIFF 21776 kb)
12665_2012_1723_MOESM2_ESM.tif (21.3 mb)
(B) Commonly in bleached sandstones clay cutans are lacking at mineral-pore space (P) interfaces and poikiloblastic remnants of pore filling anhydrite (An) and calcite (Cc) cementation is preserved-IP = intragranular pore, VL = volcanic clast (TIFF 21776 kb)
12665_2012_1723_MOESM3_ESM.tif (21.2 mb)
(C) Chlorite precipitation within and close to intermediate to mafic volcanic clasts, which consist of plagioclase laths and interstitial (devitrified) volcanic glass is common (TIFF 21757 kb)
12665_2012_1723_MOESM4_ESM.tif (21.2 mb)
(D) Dissolution of volcanic clasts after (second stage, Mn- and Fe-enriched) calcite generation forms intragranular porosity and favours Fe-depleted and Si-enriched chlorite growth (TIFF 21757 kb)
12665_2012_1723_MOESM5_ESM.tif (21.2 mb)
(E) Like in carbonate minerals, preferential dissolution along cleavage planes and their intersections are also observed in feldspar clasts—note: triangular-like (etch pit typical) shaped intrapore boundaries (TIFF 21757 kb)
12665_2012_1723_MOESM6_ESM.tif (9.4 mb)
(F) Sometimes, corroded feldspars are exposed to the open pore space and stained by crude oil/bitumen, suggesting alteration by HC-interaction (TIFF 9630 kb)
12665_2012_1723_MOESM7_ESM.tif (8.6 mb)
(G) In some bleached rocks, grain rimming chlorites extend to the pore space and exhibit (dark) greyish colours, suggesting formation prior to subsequent HC influx (TIFF 8816 kb)
12665_2012_1723_MOESM8_ESM.tif (8.9 mb)
(H) Late diagenetic formed, pore filling calcite is covering greyish (bitumen-bearing) chlorite coatings, but is also stained by bitumen—inferring carbonate precipitation almost contemporarily to HC migration (TIFF 9156 kb)

References

  1. Albrecht D, Ganzer L, Gaupp R, Kohlhepp B, Meyer R, Pudlo D, Reitenbach V, Wienand J (2011) Investigations on the suitability of Rotliegend reservoir sandstones of the German Altmark natural gas field for EGR-projects. In: Conference proceedings of DGMK/ÖGEW-spring meeting, Celle, 2011, pp 563–572Google Scholar
  2. Allan MM, Turner A, Yardley BWD (2011) Relation between the dissolution rate of single minerals and reservoir rocks in acidified pore waters. Appl Geochem 26:1289–1301CrossRefGoogle Scholar
  3. Bateman K, Turner G, Pearce JM, Noy DJ, Birchall D, Rochelle CA (2005) Large-scale column experiment: study of CO2, porewater, rock reactions and model test case. Oil Gas Sci Technol Rev IFP 60:161–175CrossRefGoogle Scholar
  4. Beitler B, Parry WT, Chan MA (2005) Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo sandstone, Southern Utah, USA. J sed res 75:547–561CrossRefGoogle Scholar
  5. Bowker KA, Shuler PJ (1991) Carbon dioxide injection and resultant alteration of the Weber sandstone, Rangely field, Colorado. Am Assoc Petrol Geol Bull 75:1489–1499Google Scholar
  6. Brandt F, Bosbach D, Krawczyk-Bärsch E, Arnold T, Bernhard G (2003) Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach. Geochim Cosmochim Acta 67:1451–1461CrossRefGoogle Scholar
  7. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer—the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  8. Curtis CD, Hughes CR, Whiteman JA, Whittle CK (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineral Mag 49:375–386CrossRefGoogle Scholar
  9. De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci (this issue)Google Scholar
  10. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Pearson Education Limited, Harlow, p 696Google Scholar
  11. Fischer C, Dunkl I, Wijbrans JR, von Eynatten H, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German basin, Parchim Formation, Flechtingen high, Germany). Geol Mag, p 14. doi: 10.1017/S0016756811001087
  12. Flaathen TK, Gislason SR, Oelkers EH, Sveinbjörnsdóttir AE (2009) Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO2 sequestration in basaltic rocks. Appl Geochem 24:463–474CrossRefGoogle Scholar
  13. Gast RE (1988) Rifting im Rotliegenden Niedersachsens. Die Geowissenschaften 4:115–122Google Scholar
  14. Gast R, Pasternak M, Piske J, Rasch H-J (1998) Das Rotliegend im Nordostdeutschen Raum: Regionale Übersicht, Stratigraphie, Fazies und Diagenese. Geol Jahrbuch 149:59–80Google Scholar
  15. Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Zbl Geol Paläont 11(12):1183–1199Google Scholar
  16. Gaupp R, Okkerman JA (2011) Diagenesis and reservoir quality of Rotliegend sandstones in the northern Netherlands—a review. In: Grötsch J, Gaupp R (eds) The Permian Rotliegend of the Netherlands. SEPM special publication, Tulsa, 98, pp 193–226Google Scholar
  17. Hartmann B (1997) Mobilität von Seltenen-Erd-Elementen (SEE) und deren Fixierung in Karbonatphasen am Beispiel von Rotliegend-Sandsteinen des Norddeutschen Beckens. PhD thesis, University Mainz, Mainz, p 116Google Scholar
  18. Haszeldine RS, Quinn O, England G, Wilkinson M, Shipton ZK, Evans JP, Heath J, Crossey L, Ballentine CJ, Graham CM (2005) Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil Gas Sci Technol Rev IFP 60:33–49CrossRefGoogle Scholar
  19. Hutcheon I, Oldershaw A, Ghent ED (1980) Diagenesis of Cretaceous sandstones of the Kootenay formation at Elk valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta). Geochim Cosmochim Acta 44:1425–1435CrossRefGoogle Scholar
  20. Jahren JS, Aagaard P (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Mineral 24:157–170CrossRefGoogle Scholar
  21. Kirste DM, Watson MN, Tingate PR (2004) Geochemical modelling of CO2–water–rock interaction in the Pretty Hill Formation, Otway basin. In: Boult PJ, Johns DR, Lang SC (eds) Eastern Australasian basins Symposium II, Special publication, 19–22 Sep 2004, Adelaide. Petroleum exploration association of Australia, Adelaide, pp 403–411Google Scholar
  22. Knauss KG, Johnson JW, Steefel CI, Nitao JJ (2005) Evaluation of the impact of CO2, aqueous fluid, and reservoir rock interactions on the geologic sequestration of CO2 with special emphasis on economic implications. Lawrence Livermore National Laboratory report, Morgantown, 14–17 May 2001, p 11Google Scholar
  23. Kohlhepp B (2012) Untersuchungen zur Fazies, Diagenese und Poren-Mineralgrenzflächen an Rotliegend Sandsteinen im Rahmen einer Analogstudie zur Wirkung von CO2 auf Gasspeichersysteme. Ph D thesis, Friedrich-Schiller Universität Jena, Jena, pp 243Google Scholar
  24. Kühn M, Clauser C (2006) Mineralische Bindung von CO2 bei der Speicherung im Untergrund in geothermischen Reservoiren. Chem Ing Tech 78:425–434CrossRefGoogle Scholar
  25. Lu J, Wilkinson R, Haszeldine RS, Boyce AJ (2011) Carbonate cements in Miller field of the UK North Sea: a natural analog for mineral trapping in CO2 geological storage. Environ Earth Sci 62:507–517CrossRefGoogle Scholar
  26. Lüders V, Reutel C, Hoth P, Banks DA, Mingram B, Petthe T (2005) Fluid and gas migration in the North German basin: fluid inclusion and stable isotope constraints. Int J Earth Sci (Geol Rundsch) 94:990–1009CrossRefGoogle Scholar
  27. Lutz M, Kaasschieter JPH, van Wijhe DH (1975) Geological factors controlling Rotliegend gas accumulations in the mid-European basin. In: Paper (WPC 16109) presented at 9th world petroleum congress, Tokyo, 11–16 May 1975, pp 93–103Google Scholar
  28. Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications. SEPM short course, Tulsa, 25, pp 9–25Google Scholar
  29. MacInnis IN, Brantley SL (1992) The role of dislocations and surface morphology in calcite dissolution. Geochim Cosmochim Acta 56:1113–1126CrossRefGoogle Scholar
  30. McBride EF (1963) A classification of common sandstones. J Sediment Petrol 33:664–669Google Scholar
  31. Newirkowez K (2011) Effect of CO2-brine-rock interaction on petrophysical properties of reservoir rocks. Bachelor-thesis, Clausthal University of Technology, p 63Google Scholar
  32. Norden B, Förster A, Behrends K, Prokoph K, Stecken L, Meyer R (2012) Geological and thermal structure of the larger Altensalzwedel area: inputs for a shared earth model of the CLEAN site. Environ Earth Sci (this issue)Google Scholar
  33. Pudlo D, Hilse U, Gaupp R, Gernert U (2009) Genesis and alteration of volcanic lithoclasts in Rotliegend deposits in central Germany. GeoDresden 30 Sep to 2 Oct 2009, Schriftenr Deut Gesell Geowissensch, 63, p 199Google Scholar
  34. Pudlo D, Albrecht D, Ganzer L, Gaupp R, Kohlhepp B, Meyer R, Reitenbach V, Wienand J (2011a) Petrophysical, facies and mineralogical-geochemical investigations of Rotliegend sandstones from the Altmark natural gas field in central Germany. Energy procedia 4:4648–4655CrossRefGoogle Scholar
  35. Pudlo D, Stadler S, De Lucia M, Nowak T, Kohlhepp B, Gaupp R (2011b) Comparison of observed mineral alteration processes and their numerical simulation in red bed and bleached Rotliegend sandstones of the Altmark area (central Germany). Les Rencontres scientifiques d’IFP nouvelles. Flows and mechanics in natural porous media from pore to field scale. Pore 2 Field, 16–18 Nov 2011, Rueil Malmaison/France. Available on http://www.rs-pore2field
  36. Pusch G, Meyn R, Ionescu GF, Awemo KN, May F (2009) Work package 4—process modeling. In: Pusch G (ed) Feasibility study on the potential of CO2 storage for enhanced gas recovery in mature german gas reservoirs (CSEGR). Final report of BMBF research project 03G0627A, Germany, pp 135–176Google Scholar
  37. Reitenbach V, Pusch G, Möller M, Koll S, Costantini A, Junker A, Anton H (2007) Ein rechnergestützter Gesteinsdatenkatalog für Gasformationen. In: Conference proccedings of DGMK/ÖGEW-spring meeting 2007, Celle, p 11Google Scholar
  38. Reutel C, Lüders V, Hoth P, Idiz EF (1995) Gas migration and accumulation along lineament structures–Lower Saxony basin (NW Germany). Bol Soc Espan Min 18:205–206Google Scholar
  39. Rieken R (1988) Lösungs-Zusammensetzung und Migrationsprozesse von Paläo-Fluidsystemen in Sedimentgesteinen des Norddeutschen Beckens. PhD Thesis, University of Göttingen, Göttingen, Göttinger Arbeit Z Geol u Paläont, 37, p 116Google Scholar
  40. Rimmelé G, Barlet-Gouédard V, Renard F (2009) Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth. Oil Gas Sci Technol Rev IFP, pp 16Google Scholar
  41. Ross G (1982) The dissolution effects of CO2-brine systems on permeability of UK and North Sea calcareous sandstones. In: Paper (SPE/DOE 10685) presented at third joint symposium on enhanced oil recovery of the society of petroleum engineers, Tulsa, 4–7 Apr 1982, pp 154–162Google Scholar
  42. Sayegh SG, Krause FF, Girard M, DeBree C (1990) Rock/fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada. SPE Form Eval 5:399–405Google Scholar
  43. Shiraki R, Dunn TL (2000) Experimental study on water–rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem 15:265–279CrossRefGoogle Scholar
  44. Stottmeister L, Poblozki B (1999) Die geologische Entwicklung der Altmark—eine Übersicht. Mitt Geol Sachsen-Anhalt 5:45–72Google Scholar
  45. Sung WM, Lee YS, Kim KH, Jang YH, Lee JH, Yoo IH (2011) Investigation of CO2 behaviour and study on design of optimal injection into Gorae-V aquifer. Environ Earth Sci 64:1815–1821CrossRefGoogle Scholar
  46. Turner P (1980) Continental red beds. Developments in sedimentology, 29. Elsevier Scientific Publishing Company, Amsterdam, p 537Google Scholar
  47. Ziegler PA (1990) Geological atlas of Western and central Europe. Shell Intern Petrol Maatschappij BV, 2nd edn, Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dieter Pudlo
    • 1
  • Viktor Reitenbach
    • 2
  • Daniel Albrecht
    • 2
  • Leonhard Ganzer
    • 2
  • Ulrich Gernert
    • 3
  • Joachim Wienand
    • 2
  • Bernd Kohlhepp
    • 1
  • Reinhard Gaupp
    • 1
  1. 1.Institute of GeosciencesFriedrich-Schiller-University JenaJenaGermany
  2. 2.Institute of Petroleum EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  3. 3.Centre for Electron MicroscopyTechnical University BerlinBerlinGermany

Personalised recommendations