Environmental Earth Sciences

, Volume 67, Issue 5, pp 1363–1371 | Cite as

Study of radium content and radon exhalation rates in soil samples of northern India

  • M. Shakir Khan
  • D. S. Srivastava
  • Ameer Azam
Original Article


Radon is a radioactive hazardous and ubiquitous gas. It has been recognized to be one of the major contributors to natural radiation even causing lung cancer if present at enhanced levels. There are large variations in data available in the literature for radium content and radon exhalation rates of various materials. It is a well-documented fact that radon exhalation from the ground surface depends upon a number of parameters such as soil grain size, soil porosity and radium content. For this purpose, in this study the so-called can technique has been used to measure radium content and exhalation rates of radon in soil samples collected from different places of Aligarh, Etah and Mathura districts of Uttar Pradesh—a province in northern India. These districts lie within the subtropical region of the Indo-Gangetic plains. The values of effective radium content are found to vary from 8.11 to 112.83 Bq kg−1 with a mean value of 33.21 Bq kg−1 and a standard deviation of 28.15. The values of mass exhalation rates of radon vary from 0.76 × 10−6 to 15.80 × 10−6 Bq kg−1 day−1 with a mean value of 4.21 × 10−6 Bq kg−1 day−1, while the surface exhalation rates vary from 1.97 × 10−5 to 41.03 × 10−5 Bq m−2 day−1 with a mean value of 10.93 × 10−5 Bq m−2 day−1.


Radium content Radon exhalation rates LR-115 detectors Can technique India 



The authors are thankful to the Chairman, Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh, for providing necessary facilities.


  1. Abu-Jarad FA (1988) Application of nuclear track detectors for radon related measurements. Nucl Tracks Radiat Meas 15(1–4):525–534CrossRefGoogle Scholar
  2. Abu-Jarad F, Fremlin JH, Bull R (1980) A study of radon emitted from building materials using plastic track detectors. Phys Med Biol 25:683–694CrossRefGoogle Scholar
  3. Åkerblom G, Andersson P, Clavensjö B (1984) Soil gas radon: a source for indoor radon daughters. Radiat Prot Dosim 7(1–4):49–54Google Scholar
  4. Al-Jarallah M (2001) Radon exhalation from granite used in Saudi Arabia. J Environ Radioact 53(1):91–98CrossRefGoogle Scholar
  5. Al-Jarallah MI, Abu-Jarad F, Fazal-ur-Rehman (2001) Determination of radon exhalation rates from tiles using active and passive techniques. Radiat Meas 34(1–6):491–495CrossRefGoogle Scholar
  6. Al-Jundi J, Al-Bataina BA, Abu-Rukah Y, Shehadeh HM (2003) Natural radioactivity concentrations in soil samples along the Amman Aqaba highway, Jordan. Radiat Meas 36(1–6):555–560CrossRefGoogle Scholar
  7. Anderson P, Clavensjo B, Akerblom G (1983) The effect of the ground on the concentration of radon and gamma radiation indoors. Swedish Council for Building Research, Report R9, pp 1–442Google Scholar
  8. Archer VE, Wagoner JK, Lundin FE (1973) Lung cancer among uranium miners in the United States. Health Phys 25(4):351–371CrossRefGoogle Scholar
  9. Arvela H, Winqvist K (1989) A model for indoor radon variations. Environ Intern 15(1–6):239–249CrossRefGoogle Scholar
  10. Azam A, Naqvi AH, Srivastava DS (1995) Radium concentration and radon exhalation measurements using LR-115 type II plastic track detectors. Nucl Geophys 9(6):653–657Google Scholar
  11. Bayyson H, Tirmarche M, Tymen G, Gouva S, Caillaud D, Artus JC, Vergnenegre A, Ducloy F, Laurier D (2004) Indoor radon and lung cancer in France. Epidemiol 15(6):709–716CrossRefGoogle Scholar
  12. BEIR IV (1999) Report of the Committee on the Biological Effects of Ionizing Radiation. The health effects of exposure to indoor radon. National Research Council, National Academy of Science, Washington, DCGoogle Scholar
  13. Böllhöfer A, Storm J, Martin P, Tims S (2006) Geographic variability in radon exhalation at a rehabilitated uranium mine in the Northern Territory, Australia. Environ Mon Assess 114:313–330CrossRefGoogle Scholar
  14. Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59:389–392CrossRefGoogle Scholar
  15. Carrera G, Garavaglia M, Magnoni S, Valli G, Vecchi R (1997) Natural radioactivity and radon exhalation in stony materials. J Environ Radioact 34(2):149–159CrossRefGoogle Scholar
  16. Chau ND, Chrusciel E, Prokolski L (2005) Factors controlling measurements of radon mass exhalation rate. J Environ Radioact 82:363–369CrossRefGoogle Scholar
  17. Crockett RGM, Gillmore GK, Phillips PS, Denman AR, Groves-Kirkby CJ (2006) Radon anomalies preceding earthquakes which occurred in the UK, in summer and autumn 2002. Sci Total Environ 364:138–148CrossRefGoogle Scholar
  18. Darby S, Hill D, Doll R (2001) Radon: a likely carcinogen at all exposures. Ann Oncol 12:1341–1351CrossRefGoogle Scholar
  19. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath RA, Tirmarche M, TomáBek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case–control studies. Br Med J 330:223–227CrossRefGoogle Scholar
  20. Denman AR, Phillips PS (1998) A review of the cost effectiveness of radon mitigation in domestic properties in Northamptonshire. J Radiol Prot 18:119–214CrossRefGoogle Scholar
  21. Denman AR, Crockett RGM, Groves-Kirkby CJ, Phillips PS, Gillmore GK, Woolridge AC (2007) The value of Seasonal Correction Factors in assessing the health risk from domestic radon—a case study in Northamptonshire, UK. Environ Intern 33:34–44CrossRefGoogle Scholar
  22. Durrani SA, Ilic R (eds) (1997) Radon measurements by etched track detectors: Applications in radiation protection, earth sciences and the environment. World Sci Publ Co., Ltd., LondonGoogle Scholar
  23. Eaton RS, Scott AG (1984) Understanding radon transport into houses. Radiat Prot Dosim 7(1–4):251–253Google Scholar
  24. Ferry C, Richon P, Beneito A, Robe M (2002) Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis. J Environ Radioact 63:49–64CrossRefGoogle Scholar
  25. Fleischer RL (1980) Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects. Science 207:979–981CrossRefGoogle Scholar
  26. Fleischer RL (1982) Alpha-recoil damage and solution effects in minerals: uranium isotopic disequilibrium and radon release. Geochim Cosmochim Acta 46(11):2191–2201CrossRefGoogle Scholar
  27. Gillmore GK, Phillips PS, Denman AR (2005) The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach. J Environ Radioact 84:469–479CrossRefGoogle Scholar
  28. Groves-Kirkby CJ, Denman AR, Phillips PS, Crockett RGM, Woolridge AC, Tornberg R (2006a) Radon mitigation in domestic properties and its health implications: a comparison between during-construction and post-construction radon reduction. Environ Intern 32:435–443CrossRefGoogle Scholar
  29. Groves-Kirkby CJ, Denman AR, Crockett RGM, Phillips PS, Gillmore GK (2006b) Identification of tidal and climatic influences within domestic radon time-series from Northamptonshire, UK. Sci Total Environ 367:191–202CrossRefGoogle Scholar
  30. Guo Q, Sun K, Cheng J (2004) Methodology study on evaluation of radon flux from soil in China. Radiat Prot Dosim 112:291–296CrossRefGoogle Scholar
  31. Hafez AF, Hussein AS, Rasheed NM (2001) A study of radon and thoron release from Egyptian building materials using polymeric nuclear track detectors. Appl Radiat Isot 54:291–298CrossRefGoogle Scholar
  32. Ibrahiem NM, Abdel-Ghani AH, Shawky SM, Ashraf EM, Farouk MA (1993) Measurement of radioactivity levels in soil in the Nile Delta and Middle Egypt. Health Phys 64(6):620–627CrossRefGoogle Scholar
  33. Ibrahim N (1999) Natural activities of 238U, 232Th and 40K in building materials. J Environ Radioact 43(3):255–258CrossRefGoogle Scholar
  34. Jonassen N (1983) The determination of exhalation rates. Health Phys 45(2):369–372CrossRefGoogle Scholar
  35. Karpińska M, Mnich Z, Kapala J, Antonowicz K, Przestalski M (2005) Time changeability in radon concentration in one-family dwelling houses in the northeastern region of Poland. Radiat Prot Dosim 113:300–307CrossRefGoogle Scholar
  36. Keller G, Hoffmann B, Feigenspan T (2001) Radon permeability and radon exhalation of building materials. Sci Total Environ 272:85–89CrossRefGoogle Scholar
  37. Khan AJ, Prasad R, Tyagi RK (1992) Measurement of radon exhalation rate from some building materials. Nucl Tracks Radiat Meas 20(4):609–610CrossRefGoogle Scholar
  38. Khan MS, Zubair M, Verma D, Naqvi AH, Azam A, Bhardwaj MK (2011a) The study of indoor radon in the urban dwellings using plastic track detectors. Environ Earth Sci 63:279–282CrossRefGoogle Scholar
  39. Khan MS, Naqvi AH, Azam A, Srivastava DS (2011b) Radium and radon exhalation studies of soil. Iran J Radiat Res 8(4):207–210Google Scholar
  40. Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Wellmann J, Keller G, Wichmann HE (2001) Case–control study on lung-cancer and residential radon in Western Germany. Am J Epidemiol 153:42–52CrossRefGoogle Scholar
  41. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Létourneau EG, Lynch CF, Lyon JI, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case–control studies. Epidemiol 16(2):137–145CrossRefGoogle Scholar
  42. Lawrence CE, Akber RA, Böllhöfer A, Martin P (2009) Radon-222 exhalation from open ground on and around a uranium mine in the wet–dry tropics. J Environ Radioact 100:1–8CrossRefGoogle Scholar
  43. Lubin JH, Boice JD Jr (1997) Lung cancer risk from residential radon: meta-analysis of eight epidemiological studies. J Natl Cancer Inst 89:49–57CrossRefGoogle Scholar
  44. Mahur AK, Khan MS, Naqvi AH, Prasad R, Azam A (2008) Measurement of effective radium content of sand samples collected from Chhatrapur beach, Orissa, India using track etch technique. Radiat Meas 43(Supplement1):S520–S522CrossRefGoogle Scholar
  45. Miles JCH (2001) Temporal variation of radon levels in houses and implications for radon measurement strategies. Radiat Prot Dosim 93:369–375CrossRefGoogle Scholar
  46. Miles JCH, Appleton JD (2005) Mapping variation in radon potential both between and within geological units. J Radiol Prot 25:257–276CrossRefGoogle Scholar
  47. Mireles F, Davila JI, Quirino LL, Lugo JF, Pinedo JL, Rios C (2003) Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. Health Phys 84(3):368–372CrossRefGoogle Scholar
  48. Mose DG, Mushrush GW, Crosniak CE, Morgan WF (1991) Seasonal indoor radon variations related to precipitation. J Environ Mol Mutagen 17(4):223–230CrossRefGoogle Scholar
  49. Mustonen R (1984) Natural radioactivity in and radon exhalation from Finnish building materials. Health Phys 46(6):1195–1203CrossRefGoogle Scholar
  50. Naismith SP, Miles JCH, Scivyer CR (1998) The influence of house characteristics on the effectiveness of radon remedial measures. Health Phys 75(4):410–416CrossRefGoogle Scholar
  51. NBS (National Bureau of Standards) (1980) Radon in buildings, vol 581. NBS special publ, Washington, DCGoogle Scholar
  52. Nordic (2000) Naturally occurring radiation in the Nordic Countries—recommendations. In: The flag-book series. The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, ReykjavikGoogle Scholar
  53. OECD (1979) Organization for economic cooperation and development. In: Exposure to radiation from natural radioactivity in building materials. Report by a group of Experts of the OECD Nuclear Energy Agency, OECD, ParisGoogle Scholar
  54. Paridaens J, de Saint-Georges L, Vanmarcke H (2005) Mitigation of a radon-rich Belgian dwelling using active subslab depressurization. J Environ Radioact 79:25–37CrossRefGoogle Scholar
  55. Petropoulos NP, Anagnostakis MJ, Simopoulos SE (2001) Building materials radon exhalation rate: ERRICCA intercomparison exercise results. Sci Tot Environ 272:109–118CrossRefGoogle Scholar
  56. Popovic D, Djuric G, Todorovic D (1996) Radionuclides in building materials and radon indoor concentrations. Radiat Prot Dosim 63(3):223–225CrossRefGoogle Scholar
  57. Popovic D, Djuric G, Todorovi D, Spasic-Jokic V (2000) Radionuclides of building materials and radon concentrations in Belgrade dwellings. Cent Eur J Occupat Environ Med 6(2–3):129–133Google Scholar
  58. Ramola RC, Chaubey VM (2003) Measurement of radon exhalation rate from soil samples of Garhwal Himalaya, India. J Radioanal Nucl Chem 256(2):219–223CrossRefGoogle Scholar
  59. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170CrossRefGoogle Scholar
  60. Samuelsson C, Pettersson H (1984) Exhalation of 222Rn from porous materials. Radiat Prot Dosim 7(1–4):95–100Google Scholar
  61. Savidou A, Raptis C, Kritidis P (1996) Study of natural radionuclides and radon emanation in bricks used in the Attica region, Greece. J Environ Radioact 31(1):21–28CrossRefGoogle Scholar
  62. Sevc J, Kunz E, Placek V (1976) Lung cancer in uranium mines and long-term exposure to radon daughter products. Health Phys 30(6):433–437CrossRefGoogle Scholar
  63. Sharma DK, Kumar A, Kumar M, Singh S (2003) Study of uranium, radium and radon exhalation rate in soil samples from some areas of Kangra District, Himachal Pradesh, India using solid-state nuclear track detectors. Radiat Meas 36(1–6):363–366CrossRefGoogle Scholar
  64. Singh S, Kumar A, Singh B (2002) Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India. Environ Intern 28:97–101CrossRefGoogle Scholar
  65. Singh S, Singh B, Kumar A (2003) Natural radioactivity measurements in soil samples from Hamirpur District, Himachal Pradesh, India. Radiat Meas 36(1–6):547–549CrossRefGoogle Scholar
  66. Singh K, Singh M, Singh S, Sahota HS, Papp Z (2005) Variation of radon (222Rn) progeny concentrations in outdoor air as a function of time, temperature and relative humidity. Radiat Meas 39(2):213–217CrossRefGoogle Scholar
  67. Singh J, Singh H, Singh S, Bajwa BS, Sonkawade RG (2009) Comparative study of natural radioactivity levels in soil samples from the upper Siwaliks and Punjab, India using gamma-ray spectrometry. J Environ Radioact 100:94–98CrossRefGoogle Scholar
  68. Somogyi G (1986) Track detection methods of radium measurements. ATOMKI preprint E/25Google Scholar
  69. Somogyi G (1990) The environmental behavior of radium, vol 1. Technical Reports Series No. 310, IAEA, Vienna, pp 229–256Google Scholar
  70. Sroor A, El-Bahi SM, Ahmed F, Abdel-Haleem AS (2001) Natural radioactivity and radon exhalation rate of soil in southern Egypt. Appl Radiat Isot 55:873–879CrossRefGoogle Scholar
  71. Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240CrossRefGoogle Scholar
  72. Tanner AB (1964) Radon migration in the ground: a review. In: Adams JAS, Lowder WM (eds) The natural radiation environment. University of Chicago Press, Chicago, pp 61–190Google Scholar
  73. Tanner AB (1980) Radon migration in the ground: a supplementary review. In: Gesell TF, Lowder WM (eds) The natural environment III. National Technical Information Service, Springfield, VA, USDOE Report CONF-780422, pp 5–56Google Scholar
  74. Todorovic D, Popovic D, Djuric G (1994) Natural radionuclides in building materials. In: Natural radiation in the environment. Inst Nucl Sci Vinca, Belgrade, pp 249–257Google Scholar
  75. Todorovic D, Popovic D, Djuric G, Radenkovic M (2000) 210Pb in ground-level air in Belgrade city area. Atms Environ 34(19):3245–3248CrossRefGoogle Scholar
  76. Tuccimei P, Moroni M, Norcia D (2006) Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: Influence of particle size, humidity and precursors concentration. Appl Radiat Isot 64:254–263CrossRefGoogle Scholar
  77. Umar R, Ahmad MS (2000) Groundwater quality in parts of Central Ganga Basin, India. Environ Geol 39(6):673–678CrossRefGoogle Scholar
  78. UNSCEAR (1993) United Nations Scientific Committee on the effects of atomic radiation. Sources, effects and risks of ionizing radiation. United Nations, New YorkGoogle Scholar
  79. UNSCEAR (1994) United Nations Scientific Committee on the effects of atomic radiation. Ionizing radiation: Sources and biological effects, United Nations, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Shakir Khan
    • 1
  • D. S. Srivastava
    • 2
  • Ameer Azam
    • 1
  1. 1.Department of Applied Physics, Z. H. College of Engineering and TechnologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of PhysicsMangalayatan UniversityAligarhIndia

Personalised recommendations