Advertisement

Environmental Earth Sciences

, Volume 65, Issue 8, pp 2299–2309 | Cite as

Punctual and continuous estimation of transit time from dissolved organic matter fluorescence properties in karst aquifers, application to groundwaters of ‘Fontaine de Vaucluse’ experimental basin (SE France)

  • T. Blondel
  • C. Emblanch
  • C. Batiot-Guilhe
  • Y. Dudal
  • D. Boyer
Special Issue

Abstract

For about 10 years, environmental tracing development using dissolved organic matter (DOM) has been the subject of several studies. Particularly, the use of characterization techniques, like fluorescence emission–excitation matrices has enabled the identification of DOM sources and monitoring them within mainland or marine hydrosystems. Moreover, hydrogeologists have shown the significance of total organic carbon content used as a fast seepage tracer in karstic aquifers. The aim of this study consists in using DOM fluorescence signals to develop a transit time semi-quantitative tracer in heterogeneous hydrosystems. The Low-Noise Underground Laboratory (Vaucluse, France) cuts the network of Fontaine de Vaucluse (FV) karstic vadose zone randomly, and offers a special access to different unstructured dripwaters, with different hydrodynamic behaviour, inside its galleries, i.e. not hierarchical as in natural caves. Previous long-term hydrodynamic and hydrochemical studies allowed the understanding of their hydrogeological behaviour and the estimation of mean transit times. That is why this site is adequate to develop new transit time tracers. After identification of the different DOM sources (i.e. lithic and rendzic leptosols), fluorescence intensities monitoring from soil leachates and dripwaters, for certain excitation–emission wavelength pairs, allowed the development of punctual transit time tracing, by spotting infiltration periods of fluorescent compounds, and monitoring their transfer within a hydrosystem. A fluorescence index (humification index) and the mean transit time of each gallery groundwater, stemmed from previous hydrodynamic and hydrochemical studies, allowed the calibration of a logarithmic relationship. This one allows the development of a continuous transit time tracing method that estimates transit times without long-term studies. It has been tested on two springs of FV catchment basin, providing transit time estimations for karstic hydrosystems that do not present a mixture between recent and pluriannual waters.

Keywords

Environmental tracing method Karst groundwaters Dissolved organic matter Fluorescence spectroscopy 

Notes

Acknowledgments

We thank S. Gaffet (CNRS Sophia-Antipolis) for access to the LSBB site. R. Simler, M. Daniel, M. Babic (UMR EMMAH) and D. Boyer, A. Cavaillou, M. Auguste (LSBB) and G. Daudin (INRA Montpellier) are acknowledged for their help in analysis.

References

  1. Baker A, Genty D (1999) Fluorescence wavelength and intensity variations of cave waters. J Hydrol 217(1–2):19–34CrossRefGoogle Scholar
  2. Baker A, Lamont-BIack J (2001) Fluorescence of dissolved organic matter as a natural tracer of ground water. Ground Water 39(5):745–750CrossRefGoogle Scholar
  3. Batiot C (2002) Etude expérimentale du cycle du carbone en régions karstiques. Apport du carbone organique et du carbone minéral à la connaissance hydrogéologique des systèmes. Site expérimental de Vaucluse, Jura, Larzac, Région Nord-Montpelliéraine, Nerja (Espagne). PhD Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, FranceGoogle Scholar
  4. Batiot C, Emblanch C, Blavoux B (2003) Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems. Comptes Rendus Geosci 335(2):205–214CrossRefGoogle Scholar
  5. Birdwell JE, Engel AS (2010) Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards aquifer, central Texas. J Cave Karst Stud 71(2):144–156Google Scholar
  6. Blavoux B, Mudry J, Puig J-M (1992) Rôle du contexte géologique et climatique dans la genèse et le fonctionnement du karst de Vaucluse, vol 13. IAH Intern, HannoverGoogle Scholar
  7. Blondel T (2008) Traçage spatial et temporel des eaux souterraines dans les hydrosystèmes karstiques par les MOD. Expérimentation et application sur les sites du LSBB et de Fontaine de Vaucluse. PhD Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, FranceGoogle Scholar
  8. Blondel T, Travi Y, Emblanch C, Dudal Y (2010) Organic matter as a potential complementary tool for δ18O data interprétation in heterogeneous aquifers. Isotopes Environ Health Stud 46(1):27–36CrossRefGoogle Scholar
  9. Chen W, Westerhoff PK, Leenheer JA, Booksh K (2003) Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710CrossRefGoogle Scholar
  10. Christ M, David MB (1994) Fractionation of dissolved organic carbon in soil water: effects of extraction and storage methods. Commun Soil Sci Plant Anal 25(19/20):3305–3319CrossRefGoogle Scholar
  11. Coble P (1996) Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Marine Chem 51:325–346CrossRefGoogle Scholar
  12. Cognard-Plancq A-L, Gevaudan C, Emblanch C (2006) Historical monthly rainfall-runoff database on Fontaine de Vaucluse karst system : review and lessons. In: Karst, cambio climatico y aguas submediterraneas, Malaga, pp 465–475Google Scholar
  13. Emblanch C, Blavoux B, Puig J-M, Mudry J (1998a) Dissolved organic carbon of infiltration within the karst hydrosystem. Geophys Res Lett 25(9):1459–1462CrossRefGoogle Scholar
  14. Emblanch C, Puig JM, Blavoux B, Couren M (1998b) Premières investigations sur le rôle de la zone non saturée dans les aquifères karstiques à l’aide du 13C. Compte Rendu de l’Académie des Sciences de Paris (série II) 326(5):327–332Google Scholar
  15. Filip Z, Tesařová M (2004) Microbial degradation and transformation of humic acids from permanent meadow and forest soils. Int Biodeterioration Biodegradation 54(2–3):225–231CrossRefGoogle Scholar
  16. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49CrossRefGoogle Scholar
  17. Garry B (2007) Etude des processus d’écoulement de la zone non saturée pour la modélisation des aquifères karstiques. Expérimentation hydrodynamique et hydrochimique sur les sites du Laboratoire Souterrain à Bas Bruit (LSBB) de Rustrel et de Fontaine de Vaucluse. PhD Thesis, Université d’Avignon et des Pays du Vaucluse, Avignon, FranceGoogle Scholar
  18. Garry B, Blondel T, Emblanch C, Sudre C, Bilgot S, Cavaillou A, Boyer D, Auguste M (2008) Contribution of artificial galleries to knowledge of karstic system behaviour in addition to natural cavern data. Int J Speleol 37(1):75–82Google Scholar
  19. Greenland DJ (1971) Interaction between humic and fulvic acids and clays. Soil Sci 111(1):34–41CrossRefGoogle Scholar
  20. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide. Mechanisms and models. Environ Sci Technol 28(1):38–46CrossRefGoogle Scholar
  21. Hall GJ, Clow KE, Kenny JE (2005) Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis. Environ Sci Technol 39(19):7560–7567CrossRefGoogle Scholar
  22. Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649CrossRefGoogle Scholar
  23. Juhna T, Klavins M, Eglite L (2003) Sorption of humic substances on aquifer material at artificial recharge of groundwater. Chemosphere 51(9):861–868CrossRefGoogle Scholar
  24. Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54(2):219–236CrossRefGoogle Scholar
  25. Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33(3):307–318CrossRefGoogle Scholar
  26. Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40(15):4605–4611CrossRefGoogle Scholar
  27. Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625CrossRefGoogle Scholar
  28. Lapworth DJ, Gooddy DC, Butcher AS, Morris BL (2008) Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). Appl Geochem 23(12):3384–3390CrossRefGoogle Scholar
  29. Larsen LG, Aiken GR, Harvey JW, Noe GB, Crimaldi JP (2010) Using fluorescence spectroscopy to trace seasonal DOM dynamics, disturbance effects, and hydrologic transport in the Florida Everglades. J Geophys Res Biogeosci 115 (in press)Google Scholar
  30. Lastennet R, Puig J-M, Emblanch C, Blavoux B (1995) Influence de la zone non saturée sur le fonctionnement des systèmes karstiques. Mise en évidence dans les sources du Nord-Vaucluse. Hydrogéologie 4:57–66Google Scholar
  31. Lombardi AT, Jardim WF (1999) Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Res 33(2):512–520CrossRefGoogle Scholar
  32. Mariot M, Dudal Y, Furian S, Sakamoto A, Vallès V, Fort L, Barbiero L (2007) Dissolved organic matter fluorescence as a water-flow tracer in the tropical wetland of Pantanal of Nhecolândia. Br Sci Total Environ 388(1–3):184–193CrossRefGoogle Scholar
  33. Masse JP (1968) L’Urgonien de Sault (Vaucluse). Bull Soc Geol France 9(4):495–596Google Scholar
  34. Masse JP (1972) Structures cryptalguaires libres dans un complexe carbonaté de plate-forme: les calcaires urgoniens (Barrémien) de Provence (Sud-est de la France) In: 24th International Geological Congress, Montréal, pp 572–585Google Scholar
  35. Maurice LD, Atkinson TC, Barkera JA, Bloomfieldb JP, Farrantb AR, Williams AT (2006) Karstic behaviour of groundwater in the English Chalk. J Hydrol 330(1–2):63–70CrossRefGoogle Scholar
  36. Mayer LM, Xing BS (2001) Organic matter-surface area relationships in acid soils. Soil Sci Soc Am J 65(1):250–258CrossRefGoogle Scholar
  37. McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330(3–4):543–563CrossRefGoogle Scholar
  38. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746CrossRefGoogle Scholar
  39. Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31(12):1765–1781CrossRefGoogle Scholar
  40. Phillips FM, Castro MC (2005) Groundwater dating and residence-time measurements. In: Drever JI (ed) Surface and groundwater, weathering, and soils, Kidlington, UK, pp 451–498Google Scholar
  41. Puig J-M (1987) Le système karstique de la Fontaine de Vaucluse. PhD Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, FranceGoogle Scholar
  42. Puig J-M (1990) L’impluvium de la Fontaine de Vaucluse, morphologie, géologie, hydrologie. In: Gaubert et al. (ed) Les cavernes d’Albion. Hydrologie et spéléologie des territoires alimentant en eau la Fontaine de Vaucluse, vol 1. Association de Recherches et d’Etudes Hydrologiques du Plateau d’Albion edn, pp 15–32Google Scholar
  43. Senesi N, Miano TM, Provenzano MR, Brunett G (1991) Characterization, differentiation and classification of humic substance by fluorescence spectroscopy. Soil Sci 152:259–271CrossRefGoogle Scholar
  44. Siano DB, Metzler DE (1969) Band shapes of the electronic spectra of complex molecules. J Chem Phys 51:1856–1961CrossRefGoogle Scholar
  45. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chem 82:239–254CrossRefGoogle Scholar
  46. Velapoldi RA, Mielenz KD (1979) Standard reference material 936: quinine sulfate dihydrate. National Bureau of Standards, Washington, DCGoogle Scholar
  47. Wu F, Tanoue E (2001) Molecular mass distribution and fluorescence characteristics of dissolved organic ligands for copper(II) in Lake Biwa. Jpn Org Geochem 32(1):11–20CrossRefGoogle Scholar
  48. Wu FC, Mills RB, Cai YR, Evans RD, Dillon PJ (2005) Photodegradation-induced changes in dissolved organic matter in acidic waters. Can J Fish Aquatic Sci 62(5):1019–1027CrossRefGoogle Scholar
  49. Zsolnay A, Baigar E, Jimenez M, Saccomandi B (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. Blondel
    • 1
  • C. Emblanch
    • 1
  • C. Batiot-Guilhe
    • 2
  • Y. Dudal
    • 3
  • D. Boyer
    • 4
  1. 1.UMR «Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes» (Université d’Avignon et des Pays de Vaucluse – INRA)AvignonFrance
  2. 2.Laboratoire HydroSciencesUniversité de Montpellier II, Maison des Sciences de l’EauMontpellierFrance
  3. 3.UMR «Biogéochimie du Sol et de la Rhizosphère» (INRA-SupAgro)MontpellierFrance
  4. 4.UMS «Laboratoire Souterrain à Bas Bruit» (CNRS - Université de Nice-Sophia-Antipolis - Université d’Avignon et des Pays de Vaucluse)Rustrel-Pays d’AptFrance

Personalised recommendations