Environmental Earth Sciences

, Volume 67, Issue 4, pp 1155–1172 | Cite as

Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry

  • Silvia Bianchini
  • Francesca Cigna
  • Gaia Righini
  • Chiara Proietti
  • Nicola Casagli
Original Article


Landslide detection and mapping represent fundamental requirements for every hazard and risk evaluation and consequent improvement of the management strategies for such natural hazards. Optical and radar remote sensing can be used to observe landslide-induced ground deformation, ranging from regional to local scales. This work presents a methodology called Landslide HotSpot Mapping; this approach integrates cartographic, thematic and optical data with Persistent Scatterer Interferometry for the identification of extremely slow to very slow moving landslides, and for the evaluation of their state of activity and intensity. This methodology scans wide areas to detect hotspots, which are narrow unstable zones characterized by higher landslide hazard. To these hotspots, priority has to be given when planning field surveys and in situ validation campaigns, so that field work time and effort can be optimized and significantly reduced. The approach is tested in Central Calabria, over a 4,470 km2 area located in southern Italy. ENVISAT ascending images acquired between 2003 and 2009 and processed with the Persistent Scatterer Pairs (PSP) technique are used to analyse deformation patterns. Combining conventional photo-interpretation with the analysis of PSP data, 64 new landslides are identified and the spatial (boundaries) and temporal (activity) information of 980 pre-mapped phenomena (23.6% of updated inventory) are updated. 1,012 active (continuous or reactivated) landslides are identified and 4 hotspot areas selected: San Fili, Rende, Lago, Catanzaro. Urgent field checks have to be organized for these hotspots to validate the satellite-based observations and to design appropriate mitigation measures to reduce impacts on the elements at risk.


Landslide Hotspot mapping Persistent scatterers Landslide inventory State of activity 



This work was carried out within the SAFER (Services and Applications For Emergency Response) project, funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under EC-ESA Grant Agreement n.218802. ENVISAT ASAR data were provided by the ESA managed GSC-DA, funded by the FP7/2007-2013 under EC-ESA Grant Agreement n.223001, and were processed by e-GEOS with the PSP-DIFSAR technique. The authors would like to thank the Italian Civil Protection Department for helping with the selection of the area of interest and the ancillary data collection, and for making the PAI (Piano Stralcio di Bacino per l’Assetto Idrogeologico) available.


  1. AdB Calabria (2001) PAI, Piano Stralcio di Bacino per l’Assetto Idrogeologico. Accessed 15 Apr 2011
  2. Amodio Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarretta G, Russo M, Scandone P, Zanettin Lorenzoni E, Zuppetta A (1976) L’arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem Soc Geol Ital 17:1–60Google Scholar
  3. Barrese E, Pellegrino A, Prestininzi A (2006) Weathering of crystalline-metamorphic rocks in the Allaro and Amusa river basin (Serre massif, Calabria, Italy): general aspects and effects of thermal-metamorphic contact belts. Ital J Eng Geol Environ 1:51–74Google Scholar
  4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on Small Baseline Differential SAR Interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383CrossRefGoogle Scholar
  5. Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng Geol 88:219–240CrossRefGoogle Scholar
  6. Browitt C, Walker A, Farina P, Devleeschouwer X, Tragheim D, Aktar M (2007) Terra not so firma, Geoscientist. Geol Soc Lond 17(6):18–22Google Scholar
  7. Bürgmann R, Hilley GE, Ferretti A (2006) Resolving vertical tectonics in the San Francisco Bay Area from Permanent Scatterer InSAR and GPS Analysis. Geology 34:221–224CrossRefGoogle Scholar
  8. Cabral-Cano E, Arciniega-Ceballos A, Díaz-Molina O, Cigna F, Osmanoglu B, Dixon T, DeMets C, Vergara-Huerta F, Garduño-Monroy VH, Ávila-Olivera JA, Hernández-Quintero E (2010) Is there a tectonic component on the subsidence process in Morelia, Mexico? In: Carreón-Freyre D et al (eds) Land subsidence, associated hazards and the role of natural resources development (328 + iv pp.), Hydrological Sciences Journal, Red Book Series. IAHS Press, Wallingford, UK, pp 164–169Google Scholar
  9. Casagli N, Colombo D, Ferretti A, Guerri L, Righini G (2008) Case study on local landslide risk management during crisis by means of remote sensing data. In: Proceedings of First World Landslide Forum, Tokyo, Japan, November 18–21, 2008, Parallel Session Volume, pp 125–128Google Scholar
  10. Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogram Remote Sens 64(6):598–611CrossRefGoogle Scholar
  11. Cello G, Tortorici L, Turco E, Guerra I (1981) Profili profondi in Calabria settentrionale. Boll Soc Geol Ital 100:423–431Google Scholar
  12. Cigna F, Bianchini S, Righini G, Proietti C, Casagli N (2010a) Updating landslide inventory maps in mountain areas by means of Persistent Scatterer Interferometry (PSI) and photo-interpretation: Central Calabria (Italy) case study. In: Malet JP, Glade T, Casagli N (eds) Mountain risks: bringing science to society, Proceedings of the International Conference, CERG Editions, Florence, Italy, November 24–26, pp 3–9Google Scholar
  13. Cigna F, Del Ventisette C, Liguori V, Casagli N (2010b) InSAR time-series analysis for management and mitigation of geological risk in urban area. In: Proceedings of IGARSS 2010, 30th IEEE international geoscience and remote sensing symposium, Honolulu, Hawaii, USA, July 25–30, pp 1924–1927Google Scholar
  14. Cigna F, Del Ventisette C, Liguori V, Casagli N (2011) Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat Hazards Earth Syst Sci 11(3):865–881CrossRefGoogle Scholar
  15. Colesanti C, Wasowski J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry. Eng Geol 88:173–199CrossRefGoogle Scholar
  16. Costantini M, Iodice A, Magnapane L, Pietranera L (2000) Monitoring terrain movements by means of sparse SAR differential interferometric measurements. In: Proceedings of IGARSS 2000, 20th IEEE international geoscience and remote sensing symposium, Honolulu, Hawaii, USA, July 24–28, p 3225–3227Google Scholar
  17. Crosetto M, Monserrat O, Iglesias R, Crippa B (2010) Persistent Scatterer Interferometry: potential, limits and initial C- and X-band comparison. Photogram Eng Remote Sens 76(9):1061–1069Google Scholar
  18. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and Mitigation, Sp. Rep. 247, Transportation Research Board, National research Council. National Academy Press, Washington DC, pp 36–75Google Scholar
  19. Cucci L, Cinti FR (1998) Regional uplift and local tectonic deformation recorded by the Quaternary marine terraces on the Ionian coast of the northern Calabria (southern Italy). Tectonophysics 292:67–83CrossRefGoogle Scholar
  20. Cucci L (2004) Raised marine terraces in the Northern Calabrian Arc (Southern Italy): a ~600 kyr-long geological record of regional uplift. Ann Geophys 47(4):1391–1406Google Scholar
  21. Dixon TH, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim SW, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans: a subsidence map of the city offers insight into the failure of the levees during Hurricane Katrina. Nature 441:587–588CrossRefGoogle Scholar
  22. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217CrossRefGoogle Scholar
  23. Farina P, Casagli N, Ferretti A (2008) Radar-interpretation of InSAR measurements for landslide investigations in civil protection practices. In: Proceedings of 1st North American Landslide Conference, Vail, Colorado, pp 272–283Google Scholar
  24. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98CrossRefGoogle Scholar
  25. Ferranti L, Santoro E, Mazzella ME, Monaco C, Morelli D (2009) Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics 476:226–251CrossRefGoogle Scholar
  26. Ferretti A, Prati C, Rocca F (2001) Permanent Scatterers in SAR Interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  27. Ferretti A, Savio G, Barzaghi R, Borghi A, Musazzi S, Novali F, Prati C, Rocca F (2007) Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans Geosci Remote Sens 45:1142–1153CrossRefGoogle Scholar
  28. Genevois R, Prestininzi A (1979) Analisi tridimensionale dei versanti rocciosi: la frana di Salincriti (RC). Geol Appl Idrogeol 19(3):367–387Google Scholar
  29. Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci. doi: 10.1007/s12665-011-0951-x
  30. Guerricchio A (2004) Tectonics, deep seated gravitational deformations (dsgsds) and large landslides in Calabria (Southern Italy). In: Proceedings of IGC, Florence, Italy. doi: 10.1474/GGA.2005-01.0-08.0008
  31. Guzzetti F (2004) Landslide mapping, hazard assessment and risk evaluation: limits and potential. In: Proceedings of international symposium on landslide and debris flow hazard assessment, National Center for Research on Earthquake Engineering, Taipei, October 7–8, pp C1–C17Google Scholar
  32. Herrera G, Davalillo JC, Cooksley G, Monserrat O, Pancioli V (2009) Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587–1598CrossRefGoogle Scholar
  33. Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from Permanent Scatterer analysis. Science 304(5679):1952–1955CrossRefGoogle Scholar
  34. Iovine G, Petrucci O, Rizzo V, Tansi C (2006) The March 7th, 2005 Cavallerizzo (Cerzeto) landslide in Calabria, Southern Italy. IAEG 2006, Paper no. 785Google Scholar
  35. ISPRA (2007) IFFI, Inventario dei Fenomeni Franosi in Italia. Accessed 4 May 2011
  36. Knott SD, Turco E (1991) Late Cenozoic kinematics of the Calabrian Arc, Southern Italy. Tecton 10(6):1164–1172CrossRefGoogle Scholar
  37. Lanari R, Berardino P, Borgström S, Del Gaudio C, De Martino P, Fornaro G, Guarino S, Ricciardi GP, Sansosti E, Lundgren P (2004) The use of IFSAR and classical geodetic techniques for caldera unrest episodes: application to the Campi Flegrei uplift event of 2000. J Volcanol Geoth Res 133:247–260CrossRefGoogle Scholar
  38. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500CrossRefGoogle Scholar
  39. Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) Ground deformations monitoring by using the Permanent Scatterers Technique: the example of the Oltrepo Pavese (Lombardia, Italy). Eng Geol 88:240–259CrossRefGoogle Scholar
  40. Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492CrossRefGoogle Scholar
  41. Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875CrossRefGoogle Scholar
  42. Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with Persistent Scatterer InSAR. Int J Appl Earth Obs 13(1):1–12CrossRefGoogle Scholar
  43. Pancioli V, Raetzo H, Campolmi T, Casagli N (2008) Terrafirma landslide services for europe based on space-borne InSAR Data. In: Proceedings of first world landslide forum, Tokyo, Japan, November 18–21, Poster Session Volume, pp 81–84Google Scholar
  44. Pellegrino A, Borelli S (2007) Analisi del dissesto da frana in Calabria. In: Trigila A (ed) Rapporto sulle frane in Italia-Il Progetto IFFI: metodologia, risultati e rapporti regionali. APAT Rapporto 78/2007, pp 599–631Google Scholar
  45. Pellegrino A, Prestininzi A, Scarascia Mugnozza G (2008) Costruzione del modello geologico-tecnico in ammassi cristallino-metamorfici affetti da intensi processi di alterazione: un esempio di applicazione nei bacini delle Fiumare Allaro ed Amusa (Massiccio delle Serre, Calabria). Ital J Eng Geol Environ 1:33–60Google Scholar
  46. Righini G, Del Ventisette C, Costantini M, Malvarosa F, Minati F (2008) Space-borne SAR analysis for landslides mapping in the framework of the PREVIEW project. In: Proceedings of first world landslide forum, Tokyo, Japan, November 18–21, Parallel Session Volume, pp 505–506Google Scholar
  47. Righini G, Pancioli V, Casagli N (2011a) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens. doi: 10.1080/01431161.2011.605087
  48. Righini G, Raspini F, Moretti S, Cigna F (2011b) Unsustainable use of groundwater resources in agricultural and urban areas: a Persistent Scatterer study of land subsidence at the basin scale. In: Villacampa Y, Brebbia CA (eds) Ecosytems and sustainable development VIII. WIT transactions on ecology and the environment, vol. 144 (544 p.). WIT Press, Southampton, pp 81–92CrossRefGoogle Scholar
  49. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382CrossRefGoogle Scholar
  50. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides: Investigation and Mitigation: Sp. Rep. 247, Transportation Research Board, National research Council. National Academy Press, Washington DC, pp 129–177Google Scholar
  51. Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian arc (southern Italy). Tectonophysics 243:37–55CrossRefGoogle Scholar
  52. Van Dijk JP, Bello M, Brancaleoni GP, Cantarella G, Costa V, Frixa A, Golfetto F, Merlini S, Riva M, Torricelli S, Toscano C, Zerilli A (2000) A regional structural model for the northern sector of the Calabrian Arc (Southern Italy). Tectonophysics 324:267–320CrossRefGoogle Scholar
  53. Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric Point Target Analysis For deformation mapping. In: Proceedings of IGARSS 2003, 23rd IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, July 21–25, pp 4362–4364Google Scholar
  54. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. IAEG Bull 21(3):337–342Google Scholar
  55. WP/WLI-Working Party on World Landslide Inventory (1993) Multilingual glossary for landslides. The Canadian Geotechnical Society, BiTech Publisher, Richmond BCGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Silvia Bianchini
    • 1
  • Francesca Cigna
    • 1
  • Gaia Righini
    • 2
  • Chiara Proietti
    • 1
  • Nicola Casagli
    • 1
  1. 1.Department of Earth SciencesUniversity of FirenzeFlorenceItaly
  2. 2.ENEABolognaItaly

Personalised recommendations