Advertisement

Environmental Earth Sciences

, Volume 65, Issue 2, pp 493–504 | Cite as

The environmental impact of Aguilar mine on the heavy metal concentrations of the Yacoraite River, Jujuy Province, NW Argentina

  • Alicia Kirschbaum
  • Jesica Murray
  • Emilce López
  • Ahinoam Equiza
  • Marcelo Arnosio
  • Geraldo Boaventura
Special Issue

Abstract

The Yacoraite River and its tributaries run down the eastern slope of the Aguilar Range. It is one of the tributaries of the Rio Grande, located in Quebrada de Humahuaca, a UNESCO World Heritage site. The Aguilar underground mine (Pb–Ag–Zn) is located in the upper reaches of the Yacoraite River drainage basin. The aim of this work is to characterize the presence of heavy metals in water and sediments of the Yacoraite River and to identify their sources. The analysis shows the seasonal variation of heavy metals concentration in water and their relation with the World Health Organization (WHO) limits established for human consumption. The Yacoraite basin is naturally anomalous in some metals and some elements, such as As which is controlled by the chemical composition of regional lithology. During the wet season, Al, Co, Mo and Pb concentrations in water samples are higher than during the dry season; in addition, these metals are also higher than WHO limit values. High enrichment factors for Ba, Mo, Pb, Zn and Cd were found in Casa Grande stream, indicating the direct influence of the mining activities. Cd, Pb and Zn are present in the Aguilar ore minerals, such as sphalerite and galena. Sediments collected during the dry season show a drastic increase in the concentration of As, Pb, Ba, Zn, Cd and Mn. The Müller geo-accumulation index in Casa Grande indicates that it is a highly polluted stream. The concentrations of As, Pb, Ba, Zn, Cd are also high in Yacoraite River: Security Quality Guidelines indicates toxicity. A decrease in enrichment factors and geo-accumulation indices observed in sediments indicates the occurrence of precipitation/adsorption processes in the river to restore the equilibrium composition. Strict environmental controls in Aguilar Mine are necessary to avoid the uncontrolled input of toxic metals in Casa Grande stream and Yacoraite River.

Keywords

Heavy metals Yacoraite River Mining activity Pollution Argentina 

Notes

Acknowledgments

The authors are grateful to Red Puna social group and to Iñigo Labeaga (Engineer from Engineers Without Borders group) for the fieldwork assistance; to Alejandro Nieva, for his works in sample preparation; and to anonymous reviewers that gave helpful suggestions to improve the manuscript. This work was partially supported by the research council from the Universidad Nacional de Salta (Projects numbers 1674 and 1859). Pedro Depetris improved the English writing on the manuscript.

References

  1. Bianchi AR, Yañez CE (1992) Las precipitaciones en el Noroeste Argentino. 2rd edn. Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Regional Agropecuaria Salta. Secretaría de Estado de Agricultura, Ganadería y Pesca de la Nación, Salta. http://www.inta.gov.ar/prorenoa/zonadescarga/Precip_NOA/Precipitaciones_del_noa.pdf
  2. Davutluoglu OI, Seckin G, Ersu CB,Yilmaz T, Sari B (2011) Assessment of metal pollution in water and surface sediments of the Seyhan River, Turkey, using different indexes. Clean-Soil Air Water 39(2):185–194Google Scholar
  3. Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering and soils, vol 5. In: Holland HD, Turekian KK (eds) Treatise of geochemistry, 1st edn. Elsevier-Pergamon, Oxford, pp 225–272Google Scholar
  4. Herbert RB Jr (2006) Seasonal variations in the composition of mine drainage-contaminated groundwater in Dalarna, Sweden. J Geochem Explor 90:197–214CrossRefGoogle Scholar
  5. Lee G, Bigham JM, Faure G (2007) Processes controlling trace-metal transport in surface water contaminated by acid-mine drainage in the Ducktown Mining District, Tennessee. Water Air Soil Pollut 186:221–232CrossRefGoogle Scholar
  6. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31CrossRefGoogle Scholar
  7. Mighanetara K, Braungardt CB, Rieuwerts JS, Azizi F (2009) Contaminant fluxes from point and diffuse sources from abandoned mines in the River Tamar catchment, UK. J Geochem Explor 100:116–124. http://www.sciencedirect.com/science/article/pii/S0375674208000447 Google Scholar
  8. Müller G ((1979)) Schwemetalle in den sedimenten des Rheins—Veranderungen seit, 1971. Umschau 79(24):778–783Google Scholar
  9. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193CrossRefGoogle Scholar
  10. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, reviews in economic geology V, Chap. 6. 6A, Society of Economic Geologist, Littleton, CO, pp 133–160 ()Google Scholar
  11. Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ (2008) Multivariate and geoaccumulation index evaluation in mangrove surface sediment of Mengkabong Lagoon, Sabah. Bull Environ Contam Toxicol 81:52–56CrossRefGoogle Scholar
  12. Russo A, Serraiotto A (1979) Contribución al conocimiento de la estratigrafía Terciaria en el N.O. Argentino. VIII Congr Geol Argentino 1:715-730Google Scholar
  13. Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  14. Spencer FN (1950) The geology of the Aguilar lead—zinc mine, Argentine. Econ Geol 45(5):405–433CrossRefGoogle Scholar
  15. Sureda RJ (1999) Los yacimientos de plomo y zinc en la sierra de Aguilar, Jujuy. En: Recursos Minerales de la República Argentina (Ed. Zapppettini EO), Instituto de Geología y Recursos Minerales SEGEMAR, Buenos Aires, Anales 35:459–485Google Scholar
  16. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285CrossRefGoogle Scholar
  17. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. An examination of geochemical record preserved in sedimentary rocks. Blackwell, OxfordGoogle Scholar
  18. Turner JMC (1960) Estratigrafía de la Sierra de Santa Victoria y adyacencias. Academia Nacional de Ciencias de Córdoba 41(2):165–196Google Scholar
  19. Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070Google Scholar
  20. Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alicia Kirschbaum
    • 1
    • 2
  • Jesica Murray
    • 1
    • 2
  • Emilce López
    • 1
    • 2
  • Ahinoam Equiza
    • 3
  • Marcelo Arnosio
    • 4
  • Geraldo Boaventura
    • 5
  1. 1.Museo de Ciencias Naturales, Instituto de Bio y Geociencias del NOAUniversidad Nacional de SaltaSaltaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bio y Geociencias del NOASaltaArgentina
  3. 3.Ingeniería Sin FronterasSaltaArgentina
  4. 4.Universidad Nacional de SaltaSaltaArgentina
  5. 5.Instituto de GeocienciasUniversidad Nacional de BrasiliaBrasíliaBrazil

Personalised recommendations