Environmental Earth Sciences

, Volume 66, Issue 8, pp 2367–2378 | Cite as

Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis

  • Ishtiyaq Ahmed Najar
  • Anisa B. KhanEmail author
Original Article


Multivariate statistical techniques, such as cluster analysis, principal component analysis (PCA) and factor analysis (FA) were applied to evaluate and interpret the water quality data set for 13 parameters at 10 different sites of the three lakes in Kashmir, India. Physicochemical parameters varied significantly (p < 0.05) among the sampling sites. Hierarchical cluster analysis grouped 10 sampling sites into three clusters of less polluted, moderately polluted and highly polluted sites, based on similarity of water quality characteristics. FA/PCA applied to data sets resulted in three principal components accounting for a cumulative variance of 69.84, 65.05 and 71.76% for Anchar Lake, Khushalsar Lake and Dal Lake, respectively. Factor analysis obtained from principal components (PCs) indicated that factors responsible for accelerated eutrophication of the three lakes are domestic waste waters, agricultural runoff and to some extent catchment geology. This study assesses water quality of three lakes through multivariate statistical analysis of data sets for effective management of these lakes.


Cluster analysis Kashmir Lakes Pollution Principal component analysis Water quality 


  1. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41(19):4566–4578CrossRefGoogle Scholar
  3. Astel A, Tsakovski S, Simeonov V, Reisenhofer E, Piselli S, Barbieri P (2008) Multivariate classification and modeling in surface water pollution estimation. Anal Bioanal Chem 390(5):1283–1292CrossRefGoogle Scholar
  4. Bates RG (1978) Concept and determination of pH. In: Kolthoff IM, Elving PJ (eds) Treatise on analytical chemistry. Part 1, vol 1. Wiley-Interscience, New York, p 821Google Scholar
  5. Bhat SA, Pandit AK (2003) Phytoplankton dynamics in Anchar Lake, Kashmir. J Res Dev 3:71–96Google Scholar
  6. Bhat SA, Rather SA, Pandit AK (2001) Impact of effluent from Sheri-Kashmir institute of medical sciences (SKIMS), Soura on Anchar Lake. J Res Dev 1:30–37Google Scholar
  7. Bini LM, Thomaz SM, Carvalho P (2010) Limnological effects of Egeria najas Planchon (Hydrocharitaceae) in the arms of Itaipu Reservoir (Brazil, Paraguay). Limnol 11:39–47. doi: 10.1007/s10201-009-0286-4 CrossRefGoogle Scholar
  8. Boyacioglu H, Boyacioglu H (2008) Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin, Turkey. Environ Geol 54:275–282. doi: 10.1007/s00254-007-0815-6 Google Scholar
  9. Brown L, Bellinger EG (1978) Nitrate determination in fresh and some estuarine waters by ultraviolet light absorption: a new proposed method. Water Res 12(4):223–229CrossRefGoogle Scholar
  10. Bu H, Tan X, Li S, Zhang Q (2010) Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environ Earth Sci 60:1631–1639. doi: 10.1007/s12665-009-0297-9 CrossRefGoogle Scholar
  11. Choudhary P, Routh J, Chakrapani GJ (2010) Organic geochemical record of increased productivity in Lake Naukuchiyatal, Kumaun Himalayas, India. Environ Earth Sci 60:837–843. doi: 10.1007/s12665-009-0221-3 CrossRefGoogle Scholar
  12. Dolotov AV, Gapeeva MV, Kozlovskii EV (2010) Assessment of the Uvod reservoir pollution with heavy metals. J Water Resour 37(1):58–64CrossRefGoogle Scholar
  13. Dong JD, Zhang YY, Zhang S, Wang YS, Yang ZH, Wu ML (2010) Identification of temporal and spatial variations of water quality in Sanya Bay, China by three-way principal component analysis. Environ Earth Sci 60:1673–1682. doi: 10.1007/s12665-009-0301-4 CrossRefGoogle Scholar
  14. Edwards GP, Molof AH, Schneeman RW (1965) Determination of orthophosphate in fresh and saline waters. J Amer Water Works Assoc 57:917Google Scholar
  15. Garg RK, Rao RJ, Uchchariya D, Shukla G, Saksena DN (2010) Seasonal variations in water quality and major threats to Ramsagar reservoir, India. Afr Environ Sci Technol 4(2):061–076Google Scholar
  16. Gupta S, Maheto A, Roy P, Datta JK, Saha RN (2008) Geochemistry of groundwater Burdwan district, West Bengal India. Environ Geol 53:1271–1282. doi: 10.1007/s00254-007-0725-7 Google Scholar
  17. Iscen CF, Emiroglu O, Ilhan S, Arslan N, Yilmaz V, Ahiska S (2008) Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environ Monit Assess 144:269–276. doi: 10.1007/s10661-007-9989-3 CrossRefGoogle Scholar
  18. Jasper WS (1988) Secondary standard potassium chloride conductivity solutions at 25°C. Corporate Metrology Laboratory, YSI Inc, Yellow Springs, OhioGoogle Scholar
  19. Jayaraman PR, Devi TG, Nayar TV (2003) Water quality studies on Karamana river, Thiruvananthapuram District South Kerela, India. Pollut Res 22(1):89–100Google Scholar
  20. Jeelani G, Shah AQ (2006) Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environ Geo 50:12–23. doi: 10.1007/s00254-005-0168-y Google Scholar
  21. Juahir H, Zain SM, Yusoff MK, Hanidza TIT, Armi ASM, Toriman ME, Mokhtar M (2011) Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ Monit Assess 173:625–641. doi: 10.1007/s10661-010-1411-x CrossRefGoogle Scholar
  22. Jyoti MK, Akhtar R (2007) Some limnological investigations of Sarkoot pond located in Kishtwar, district Doda, J&K State. J Res Dev 7:27–34Google Scholar
  23. Katz H, Navone R (1964) Methods for simultaneous determination of calcium and magnesium. J Amer Water Works Assoc 56:121Google Scholar
  24. Khan MA, Shah MA, Mir SS, Suzana B (2004) The environmental status of a Kashmir Himalayan wetland game reserve: aquatic plant communities and eco-restoration measures. Lakes and Reservoires. Res Manag 9(2):125–132Google Scholar
  25. Khuhawari MY, Mirza MA, Leghari SM, Arain R (2009) Limnological study of Baghsar Lake district Bhimber, Azad Kashmir. Pak J Bot 41(4):1903–1915Google Scholar
  26. Kundangar MRD, Abubakr A (2004) Thirty years of ecological research on Dal Lake Kashmir. J Res Dev 4:45–57Google Scholar
  27. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89CrossRefGoogle Scholar
  28. Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96. doi: 10.1007/s11356-008-0094-0 CrossRefGoogle Scholar
  29. Malik RN, Nadeem M (2011) Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan, using multivariate analysis techniques. Environ Geochem Health. doi: 10.1007/s10653-010-9369-8
  30. Mancy KH, Jaffe T (1966) Analysis of dissolved oxygen in natural and waste waters. Publ. No. 99-WP-37. U.S. Public Health Service, Washington, D.CGoogle Scholar
  31. Najar IA, Khan AB (2011) Assessment of pollution status of Khushalsar Lake, Kashmir, India using multivariate statistical techniques. Poll Res 30(2):131–136Google Scholar
  32. Oczkowski A, Nixon S (2008) Increasing nutrient concentrations and the rise and fall of a coastal fishery, a review of data from the Nile Delta, Egypt. Estuar Coast Shelf Sci 77:309–319. doi: 10.1016/j.ecss.2007.11.028 CrossRefGoogle Scholar
  33. Palma P, Alvarenga P, Palma VL, Fernandes RM, Soares AMVM, Barbosa IR (2010) Assessment of anthropogenic sources of water pollution using multivariate statistical techniques: a case study of the Alqueva’s reservoir, Portugal. Environ Monit Assess 165:539–552. doi: 10.1007/s10661-009-0965-y CrossRefGoogle Scholar
  34. Pandit AK (1999) Freshwater ecosystems of the Himalayas. Parthenon Publications, New YorkGoogle Scholar
  35. Pandit AK (2002) Topical evolution of lakes in Kashmir Himalaya. In: Pandit AK (ed) Natural resources of western Himalaya. Valley Book House, Srinagar J&K, pp 213–242Google Scholar
  36. Pandit AK, Yousuf AR (2002) Trophic status of Kashmir Himalayan lakes as depicted by water chemistry. J Res Dev 2:1–12Google Scholar
  37. Parashar C, Verma N, Dixit S, Shrivastava R (2008) Multivariate analysis of drinking water quality parameters in Bhopal, India. Environ Monit Assess 140:119–122. doi: 10.1007/s10661-007-9853-5 CrossRefGoogle Scholar
  38. Pawar AL (2010) Seasonal variation in physicochemical quality of Lonar lake water. J Chem Pharm Res 2(4):225–231Google Scholar
  39. Pitwell LR (1983) Standard COD. Chem Brit 19:907Google Scholar
  40. Prasanna MV, Chidambaram S, Gireesh TV, Ali TVJ (2010) A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environ Earth Sci. doi: 10.1007/s12665-010-0664-6
  41. Ree WR (1953) Thermistors for depth thermometry. J Amer Water Works Assoc 45:259Google Scholar
  42. Romshoo SA, Muslim M (2011) Geospatial modeling for assessing the nutrient load of a Himalayan lake. Environ Earth Sci 63:31–47. doi: 10.1007/s12665-011-0944-9 CrossRefGoogle Scholar
  43. Sheela AM, Letha J, Joseph S (2010) Environmental status of a tropical lake system. Environ Monit Assess. doi: 10.1007/s10661-010-1797-5
  44. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Soft 22:464–475. doi: 10.1016/j.envsoft.2006.02.001 CrossRefGoogle Scholar
  45. Shuchun Y, Bin X, Deyang K (2010) Chronology and nutrients change in recent sediment of Taihu Lake, lower Changjiang River Basin, East China. Chin Geogra Sci 20(3):202–208CrossRefGoogle Scholar
  46. Simeonova P (2007) Multivariate statistical assessment of the pollution sources along the stream of Kamchia river, Bulgaria. Ecol Chem Enginer 14(8):867–874Google Scholar
  47. Simeonova P, Simeonov V (2006) Chemometrics to evaluate the quality of water sources for human consumption. Microchimi Acta 156(3–4):315–320CrossRefGoogle Scholar
  48. Singh KP, Malik A, Singh VK, Basant N, Sinha S (2006) Multi-way modeling of hydro-chemical data of an alluvial river system-A case study. Anal Chimi Acta 571:248–259CrossRefGoogle Scholar
  49. Siraj S, Yousuf AR, Bhat FA, Parveen N (2010) The ecology of macrozoobenthos in Shallabugh wetland of Kashmir Himalaya, India. Eco Nat Enviro 2(5):84–91Google Scholar
  50. Solanki VR, Hussain MM, Raja SS (2010) Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India. Environ Monit Assess 163:411–419. doi: 10.1007/s10661-009-0844-6 CrossRefGoogle Scholar
  51. Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799CrossRefGoogle Scholar
  52. Srivastava N, Harit GH, Srivastava R (2009) A study of physico-chemical characteristics of lakes around Jaipur. India J Environ Biol 30(5):889–894Google Scholar
  53. Thompson KC, Reynolds RJ (1978) Atomic absorption, fluorescence, and flame spectroscopy-a practical approach, 2nd edn. John Wiley and Sons, New YorkGoogle Scholar
  54. Trisal CL (1987) Ecology and conservation of Dal Lake Kashmir. Water Res Dev 3:44–54CrossRefGoogle Scholar
  55. Uzarski DG, Burton TM, Cooper MJ, Ingram JW, Timmermans S (2005) Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish-based index of biotic integrity. J Great Lakes Res 31:171–187CrossRefGoogle Scholar
  56. Vyas A, Mishra DD, Bajapai A, Dixit S, Verma N (2006) Environment impact of idol immersion activity lakes of Bhopal, India. Asian J Exp Sci 20(2):289–296Google Scholar
  57. Wang X, Lu Y, He G, Han J, Wang T (2007) Multivariate analysis of interactions between phytoplankton biomass and environmental variables in Taihu Lake, China. Environ Monit Assess 133:243–253. doi: 10.1007/s10661-006-9577-y CrossRefGoogle Scholar
  58. Wu ML, Wang YS (2007) Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuar Coatl Shelf Sci 72(4):732–742. doi: 10.1016/j.ecss.2006.11.032 CrossRefGoogle Scholar
  59. Wunderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of patial and temporal variations in water quality. A case study: Suquia river basin (Cordoba, Argentina). Water Resour 35(12):2881–2894Google Scholar
  60. Yang YH, Zhou F, Guo HC, Sheng H, Liu H, Dao X, He CJ (2010) Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ Monit Assess 170:407–416. doi: 10.1007/s10661-009-1242-9 CrossRefGoogle Scholar
  61. Yu SX, Shang JC, Zhao JS, Guo HC (2003) Factor analysis and dynamics of water quality of the Songhua River Northeast China. Water Air Soil Pollut 144(1–4):159–169CrossRefGoogle Scholar
  62. Yu FC, Fang GH, Ru XW (2010) Eutrophication, health risk assessment and spatial analysis of water quality in Gucheng Lake, China. Environ Earth Sci 59:1741–1748. doi: 10.1007/s12665-009-0156-8 CrossRefGoogle Scholar
  63. Zan F, Huo S, Xi B, Li Q, Liao H, Zhang J (2010) Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China. Environ Earth Sci. doi: 10.1007/s12665-010-0649-5
  64. Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  65. Zhang Q, Li Z, Zeng G, Li J, Fang Y, Yuan Q, Wang Y, Ye F (2009) Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environ Monit Assess 152:123–131. doi: 10.1007/s10661-008-0301-y CrossRefGoogle Scholar
  66. Zhou F, Guo HC, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geo 53(2):295–305. doi: 10.1007/s00254-007-0644-7 Google Scholar
  67. Zutshi DP, Subla BA, Khan MA, Wanganeo A (1980) Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiolgy 72:101–112. doi: 10.1007/BF00016238 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Ecology and Environmental SciencesPondicherry Central UniversityPuducherryIndia

Personalised recommendations