Environmental Earth Sciences

, Volume 66, Issue 7, pp 1871–1880 | Cite as

Urban impacts analysis on hydrochemical and hydrogeological evolution of groundwater in shallow aquifer Linares, Mexico

  • René Alberto Dávila PórcelEmail author
  • Héctor De León Gómez
  • Christoph Schüth
Original Article


In northeast Mexico is Linares City, which has an extensive agricultural area and many industrial activities. Near this city is the Cerro-Prieto Dam (~12 km NE direction); this drinking water reservoir captures the water of the Pablillo River catchment area and constitutes an important source of potable water for the metropolitan area of Monterrey, the largest urban center of this region. Groundwater sources in this area provide drinking water to Linares inhabitants. A hydrogeological and hydrochemical study was conducted on the shallow aquifers surrounding the urban centers (Linares and Hualahuises) to determine the evolution of the water quality between 1981 and 2009. The hydrochemistry was assessed upgradient and downgradient from the potential contamination sources in Linares city. Groundwater showed a chemical evolution from calcium-bicarbonate type to calcium–sodium-sulfate type. The water qualities in the downstream area after Linares are inferior compared to the upstream area before the city. Nitrate concentrations in groundwater increased significantly after 28 years indicating an important pollutant process in this period of time over the study area. The possible pollution sources could be the agricultural and farm activities, industrial development, landfills leachate, septic tanks and wastewater of municipal and domestic consumption. If the present scenario continues, an aquifer vulnerability assessment would be important for the sustainable water management.


Shallow aquifer Urban impact Hydrogeology Hydrochemistry Groundwater management Mexico 



This study was partially supported by the Universidad Autónoma de Nuevo Leon, México, PAICyT project CT 1584-07 (2008). Thanks to the sandwich doctoral program supported by the Deutscher Akademischer Austausch Dienst/DAAD, Facultad de Ciencias de la Tierra/UANL, México. The authors would also like to thank the associate editor and the anonymous reviewers for their valuable comments.


  1. Alhajjar BJ, Chesters G, Harking JM (1990) Indicators of chemical pollution from septic systems. Ground Water 28(4):559–568CrossRefGoogle Scholar
  2. Al-Shaibani AM (2008) Hydrogeology and hydrochemistry of a shallow aluvial aquifer, western Saudi Arabia. Hydrogeol J 16(1):155–165. doi: 10.1007/s10040-007-0220-y CrossRefGoogle Scholar
  3. Arumugam K, Elangovan K (2009) Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environ Geol 58:1509–1520. doi: 10.1007/s00254-008-1652-y CrossRefGoogle Scholar
  4. Barbarín-Castillo JM, Hubberten HW, Meiburg P, Rodríguez CO (1988) Hidrogeoquímica de las aguas termales del baño San Ignacio, Linares, Nuevo León, México. Actas Facultad Ciencias de la Tierra 3:89–99Google Scholar
  5. CNA (2007a) Estadísticas del Agua en México. Primera Edición edn. Comisón Nacional del Agua, MéxicoGoogle Scholar
  6. CNA (2007b) Base de datos hidrometeorológicos estaciones climatologicas e hidrométricas ubicadas al interior de la Cuenca del Río Pablillo. Monterrey, Nuevo LeónGoogle Scholar
  7. Dávila-Pórcel RA (2011) Desarrollo sostenible de usos de suelo en ciudades en crecimiento, aplicando Hidrogeología Urbana como parámetro de planificación territorial: caso de estudio Linares, N. L. Tesis de Doctorado en Ciencias. Universidad Autónoma de Nuevo León, LinaresGoogle Scholar
  8. De Cserna Z (1956) Tectónica de la Sierra Madre Oriental de México, entre Torreón y Monterrey, México. In: XX Congreso Geológico Internacional, Mexico, D.F., Instituto de Geologia U.N.A.M., p 87Google Scholar
  9. De la Garza-González SI (2000) Estudio geológico/hidrogeológico de la región citrícola Linares-Hualahuises, Nuevo León, NE-México., Facultad de Ciencias de la Tierra. Universidad Autónoma de Nuevo León, Linares, Nuevo LeónGoogle Scholar
  10. De León-Gómez H (1989) Aspectos hidrogeológicos genrerales de la cuenca del río Pablillo, Linares, N.L., México. In: Primer Simposium Regional. Avances y Perspectivas de la Investigación de Recursos Ábioticos del Noreste de México: Agua, Clima, Suelo y Geología., Universidad Autónoma de Tamaulipas, Cd. Victoria, Tamaulipas. 2–4 de Abril de 1990, 2–4 de Abril de 1990Google Scholar
  11. De León-Gómez H (1993) Die Unterläufigkeit der Talsperre José López Portillo/Cerro Prieto auf einer Kalkstein-Mergelstein-Wechselfolge bei Linares, Nuevo León/Méxiko., RWTH-Aachen AachenGoogle Scholar
  12. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New YorkGoogle Scholar
  13. Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Englewood ClifssGoogle Scholar
  14. Foster SSD, Morris BL, Lawrence AR (1994) Effects of urbanization on groundwater recharge. In: International conference on groundwater problems in urban areas. Proceedings: Institution of Civil Engineers, London, pp 43–63Google Scholar
  15. Foster SSD, Morris BL, Chilton PJ (1999) Groundwater in urban development-a review of linkages and concerns. In: Impacts of urban growth on surface water and groundwater quality, Birmingham. IAHS, pp 3–12Google Scholar
  16. Galván-Mancilla SM (1996) Cartografía Hidrogeológica de la terraza baja entre Hualahuises y Linares, N.L. Tesis de Licenciatura. Universidad Autónoma de Nuevo León, LinaresGoogle Scholar
  17. Hem JO (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Suppl Pap 2254, 3ed edn. US Geological Service, RestonGoogle Scholar
  18. Hounslow AW (1995) Water quality data: analysis and interpretation. CRC, Boca RatonGoogle Scholar
  19. INEGI (1983a) Carta Hidrológica de Aguas Subterráneas (Linares G14-11). Escala 1:250000. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  20. INEGI (1983b) Carta Hidrólogica de Aguas Superficiales (Linares G14–11). Escala 1:250000. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  21. INEGI (2005) Segundo Conteo de Población y Vivienda: Proyecto IRIS-Science II. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  22. INEGI (2006) Carta Topográfica (Linares G-14–11) Escala 1:250.000. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  23. INEGI (2010) Censo de Población y Vivienda 2010. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  24. Lizárraga-Mendiola LG (2003) Análisis y evaluación del agua subterránea del área del tiradero municipal y La Petaca, Linares, N.L. México. Universidad Autónoma de Nuevo León, Linares, Nuevo LeónGoogle Scholar
  25. Lizárraga-Mendiola L, De-León Gómez H, Medina-Barrera F, Návar J (2004) Evaluation of the impacted aquifer by the landfill of Linares, Mexico. Zbl Geol Paläont Teil I 236(1/2):225–244Google Scholar
  26. López-Ramos E (1980) Geología de México tomo II: Provincia VI Noreste de México. Instituto de Geología de la U.N.A.M.Google Scholar
  27. Matthes G (1982) The properties of groundwater. Wiley, New YorkGoogle Scholar
  28. Moreno-Esparza L (2009) Vulnerabilidad del agua subterránea a la contaminación en la región de Linares mediante el Método DRASTIC. Universidad Autónoma deNuevo León, LinaresGoogle Scholar
  29. Moussa AB, Zouari K, Oueslati N (2009) Geochemical study of groundwater mineralization in the Grombalia shallow aquifer, north-eastern Tunisia: implication of irrigation and industrial waste water accounting. Environ Geol 58:555–566. doi: 10.1007/s00254-008-1530-7 CrossRefGoogle Scholar
  30. Nickson RT, McArthur JM, Shrestha B, Kyaw-Nyint TO, Lowry D (2005) Arsenic and other drinking water issues, Muzaf-fargarh District, Pakistan. Appl Geochem:55–68Google Scholar
  31. Padilla y Sánchez RJ (1982) Geologic evolution of the Sierra Madre oriental between Linares, Concepción del Oro, Saltillo and Monterrey. University of Texas at Austin, MexicoGoogle Scholar
  32. Ruiz MA, Werner J (1997) Research into the quaternary sediments and climatic variations in NE, México. Quat Int 43(44):145–151CrossRefGoogle Scholar
  33. Schuster S (1999) Ansätze für ein hydrogeologisches Informationssystem für die Municipios de Linares und Hualahuises. Universität Leipzig, Nuevo LeonGoogle Scholar
  34. Shalash I, Ghanem M (2008) Hydrochemistry of the Natuf drainage basin in Ramallah area/West Bank. Environ Geol 55:359–367. doi: 10.1007/s00254-007-0981-6 CrossRefGoogle Scholar
  35. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920Google Scholar
  36. Whittemore DO, Gregor KMM, Marotz GA (1989) Effects of variations in recharge on groundwater quality. J Hydrol 106:131–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • René Alberto Dávila Pórcel
    • 1
    Email author
  • Héctor De León Gómez
    • 1
  • Christoph Schüth
    • 2
  1. 1.Facultad de Ciencias de la TierraUniversidad Autónoma de Nuevo León, MéxicoLinaresMexico
  2. 2.Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DeutschlandDarmstadtGermany

Personalised recommendations