Environmental Earth Sciences

, Volume 66, Issue 7, pp 1753–1767 | Cite as

Pumping dry: an increasing groundwater budget deficit induced by urbanization, industrialization, and climate change in an over-exploited volcanic aquifer

  • A. I. CalderheadEmail author
  • R. Martel
  • J. Garfias
  • A. Rivera
  • R. Therrien
Original Article


A methodology is proposed to improve the groundwater budget model by determining the past, present, and future recharge and discharge rates. The model is applied to an increasingly urbanized and industrialized region with drying tendencies: the Toluca Valley, Mexico. This study includes spatially variable recharge determined from the historical climate data, the climate change predictions, and the multiple parameters used in the Hydrologic Evaluation of Landfill Performance (HELP3) model. Using HELP3 a spatial discretization for the average recharge is obtained and estimated at 376 million cubic meters per year (Mm3/year). When considering climate change predictions, by 2050 the average scenario projects recharge to decrease by 15 Mm3/year (from 376 to 361 Mm3/year), and in a worst case scenario up to a maximum decrease of 88 Mm3/year (from 376 to 288 Mm3/year). Groundwater pumping has increased steadily since 1970 and is estimated at 495 Mm3/year for 2010. The current average deficit estimated for 2010 is 172 Mm3/year with average projections increasing to over 292 Mm3/year by 2050. This study of two of the most important components of the water cycle (recharge and discharge) clearly shows that the decreasing water availability in the Toluca basin is due mainly to groundwater pumping and that the current pumping rates are not sustainable. The current deficit can be considered problematic and projections based on expected water consumption and climate change reinforce the need for management of the water resources to be addressed.


Groundwater budget Recharge Discharge HELP3 Urbanization Water availability Toluca Valley, Mexico 



The authors would like to thank Miroslav Nastev for valuable contributions to the recharge model. We are also thankful to Sergio Murillo and the Comision Nacional del Agua for their logistical support on the field. We are grateful to the Ministère des Relations Internationales, CONACyT, the Autonomous University of the State of México (UAEM), NSERC (a discovery grant held by Richard Martel), AUCC/IDRC, and the Ministère d’Éducation du Québec for their financial support.


  1. Allen DM, Mackie DC, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol J 12:270–290CrossRefGoogle Scholar
  2. Ariel Consultores (1996) Hydrodynamic modeling study and design optimization of the monitoring well networks for the aquifers of Caldera, San Luis Potosi and Toluca (Part 3: Aquifer of Toluca) Estudio de Simulacion Hidrodinamica y Diseno Optimo de las Redes de Observacion de los acuiferos de Calera, San Luis Potosi y Toluca (Tomo 3: Acuifero de Toluca). CNA (Comisión Nacional del Agua) México, DF, Unitecnia, pp 308Google Scholar
  3. Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183
  4. Benson CH, Pliska RJ (1996) Final covers: HELP needs help from the field. Waste Age 27(3):89–98Google Scholar
  5. Berger K (2000) Validation of the hydrologic evaluation of landfill performance (HELP) model for simulating the water balance of cover systems. Env Geol 39(11):1261–1274CrossRefGoogle Scholar
  6. Calderhead AI, Martel R, Allasset P-J, Rivera A, Garfias J (2010) Land subsidence induced by groundwater pumping, monitored by D-InSAR and field data in the Toluca Valley, Mexico. Can J Remote Sens 36(1):9–23. doi: 10.5589/m10-024 CrossRefGoogle Scholar
  7. Calderhead AI, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv Water Resour 34:83–97. doi: 10.1016/j.advwatres.2010.09.017 CrossRefGoogle Scholar
  8. Carrera-Hernandez JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353(3–4):228–246CrossRefGoogle Scholar
  9. Carrillo-Rivera JJ, Cardona A, Huizar-Alvarez R, Graniel E (2008) Response of the interaction between groundwater and other components of the environment in Mexico. Env Geol 55(2):303–319CrossRefGoogle Scholar
  10. Chammas GA, Geddis M, McCaulou DR (1999) A comparison of two models for simulating the water balance of soil covers under semi-arid conditions. In: Proceedings of the national meeting of the American society for surface mining and reclamation, vol 2, pp 688–695Google Scholar
  11. CNA (2002) Determinación de la Disponibilidad de Agua en el Acuífero Valle de Toluca, Estado de México (determining water availability in the Toluca Valley aquifer, State of Mexico). México, DFGoogle Scholar
  12. CNA (2006) Datos climatológico, Servicio Meteorológico Nacional, Comisión Nacional del AguaGoogle Scholar
  13. CNA (2008) Zonas de Reserva de Agua Potable para la ciudad de Toluca. Gerencia de Agua Subterranea, Comision Nacional del Agua, Subdirection TecnicaGoogle Scholar
  14. CNA (2010) Estadísticas del agua en México. Comisión Nacional del Agua, 249 p Statistics on water in MexicoGoogle Scholar
  15. Croteau A (2006) Détermination de la distribution spatiale et temporelle de la recharge à l’aquifère régional transfrontalier du bassin versant de la rivière Châteauguay, Québec et États-Unis. Masters Thesis, Centre Eau Terre Environnement, Institut national de la recherche scientifique. Québec, CanadaGoogle Scholar
  16. DGCOH (1992) Regional hydrogeologic study of the Valleys of Toluca and Ixtlahuaca: part I. Estudio Hidrogeologico Regional de los Valles de Toluca e Ixtlahuaca: Tomo I: 214Google Scholar
  17. Fleenor WE, King IP (1995) Identifying limitations on use of the HELP model. In: Dunn RJ, Singh UP (eds) Landfill closures. Environmental protection and land recovery. ASCE, Geotechnical Special Publication, vol 53, pp 121–138Google Scholar
  18. Gogolev MI (2002) Assessing groundwater recharge with two unsaturated zone modeling technologies. Env Geol 42:248–258CrossRefGoogle Scholar
  19. GTZ-CNA (2004) Modelo de Simulación Hidrodinámica del Acuífero del Valle de Toluca, Estado de México. Deutsche Gesellschaft fur Technische Zusammenarbeit—Comisión National del AguaGoogle Scholar
  20. Hancox J, Gárfias J, Aravena R, Rudolph DL (2010) Assessing the Vulnerability of over-exploited volcanic aquifer systems using Multiparameter Analysis, Toluca Basin, Mexico. Environ Earth Sci 59(8):1643–1660CrossRefGoogle Scholar
  21. Hawksworth J (2006) The World in 2050: how big will the emerging market economies get and how can the OECD compete?. PricewaterhouseCoopers, LondonGoogle Scholar
  22. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109CrossRefGoogle Scholar
  23. IMTA (2003) Censo del utilización del agua en el valle de Toluca. Instituto Mexicano de Tecnologia del AguaGoogle Scholar
  24. INEGI (1960–2005) Censo general de población y vivienda 1960–2005. Instituto Nacional de Estadística, Geografía e InformáticaGoogle Scholar
  25. INEGI (2001) Instituto Nacional de Estadística, Geografía e Informática, Sinthesis of geographic information for the state of Mexico. Síntesis de información Geográfica del Estado de Mexico Google Scholar
  26. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  27. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J Hydrol 338:237–250CrossRefGoogle Scholar
  28. Jyrkama MI, Sykes JF, Normani SD (2002) Recharge estimation for transient ground water modeling. Ground Water 40(6):638–648CrossRefGoogle Scholar
  29. Khire MV, Benson CH, Bosscher PJ (1997) Water balance modeling of earthen final covers. J Geotech Geoenviron Eng 123:744–754CrossRefGoogle Scholar
  30. Legorrreta J (1997) Rainfall, the key to the future of the Valley of Mexico. La Jornada Ecologica 5(58):1–12Google Scholar
  31. Lesser and Asociados, S A (1992) Diagnostic study of the aquifer of the Valley of Toluca to implement a program for the extraction of groundwater. Estudio para el Diagnostico del acuífero del Valle de Toluca, para implementar la reglamentación de la extracción del agua subterráneaGoogle Scholar
  32. Liggett JE, Allen D (2010) Comparing approaches for modeling spatially distributed direct recharge in a semi-arid region (Okanagan Basin, Canada). Hydrogeol J 18:339–357CrossRefGoogle Scholar
  33. Machorro CS (1978) Unidades del suelo: Interpretadas para su uso en ingeniería civil y aprovechadas por el campesino en usos agropecuarios. Manual CECSA, MexicoGoogle Scholar
  34. Metropoli (2008) Pierde Edomex batalla legal sobre acuíferos. In: Metropoli (ed) Metropoli, Mexico, Mexico. Last accessed 4 June 2008
  35. Purdue (2008) SCS curve number method, West Lafayette, Indiana. Last accessed 4 June 2008
  36. Risser DW, Gburek WJ, Folmar GJ (2005) Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States. US Geological Survey Scientific Investigations Report 2005-5038Google Scholar
  37. Rudolph DL, Sultan R, Garfias J, McLaren RG (2006) Significance of enhanced infiltration due to groundwater extraction on the disappearance of a headwater lagoon system: Toluca Basin, Mexico. Hydrogeol J 14(1–2):115–130CrossRefGoogle Scholar
  38. Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL (1994) The hydrologic evaluation of landfill performance (HELP3) model: engineering documentation for version 3. Environmental Protection Agency Office of Research and Development, Washington, DCGoogle Scholar
  39. Scibek J, Allen DM (2006) Comparing modelled responses of two high-permeability unconfined aquifers to predicted climate change. Glob Planet Change 50:50–62CrossRefGoogle Scholar
  40. Scurlock JMO, Asner GP, Gower ST (2001) Worldwide historical estimates of leaf area index, 1932–2000. Oak ridge National Laboratory—Report for Department of Energy (USA), ORNL/TM-2001/268Google Scholar
  41. SICHEM (1999) Sistema de Information para las cuencas hidrologicas del estado de Mexico. Centro Interamericano de Recursos del Agua UAEMGoogle Scholar
  42. SRH (1970) Los acuíferos del alto Lerma pub. Comisión hidrológica de la cuenca del valle de México, 66 pGoogle Scholar
  43. UNEP (2008) Mexico’s annual population growth rate. United Nations Environment Programme data.
  44. Woyshner MR, Yanful EK (1995) Modelling and field measurements of water percolation through an experimental soil cover on mine tailings. Can Geotech J 32:601–609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. I. Calderhead
    • 1
    Email author
  • R. Martel
    • 1
  • J. Garfias
    • 2
  • A. Rivera
    • 3
  • R. Therrien
    • 4
  1. 1.Centre Eau, Terre & EnvironnementInstitut national de la recherche scientifiqueQuébecCanada
  2. 2.Facultad de Ingeniería (CIRA)Universidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Geological Survey of Canada, Natural Resources CanadaQuebecCanada
  4. 4.Département de géologie et de génie géologiqueUniversité LavalQuebecCanada

Personalised recommendations