Environmental Earth Sciences

, Volume 66, Issue 3, pp 849–857 | Cite as

Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change

  • Qiangqiang Pang
  • Lin Zhao
  • Shuxun Li
  • Yongjian Ding
Original Article


Climate change has greatly influenced the permafrost regions on the Qinghai–Tibet Plateau (QTP). Most general circulation models (GCMs) project that global warming will continue and the amplitude will amplify during the twenty-first century. Climate change has caused extensive degradation of permafrost, including thickening of the active layer, rising of ground temperature, melting of ground ice, expansion of taliks, and disappearance of sporadic permafrost. The changes in the active layer thickness (ALT) greatly impact the energy balance of the land surface, hydrological cycle, ecosystems and engineering infrastructures in the cold regions. ALT is affected by climatic, geographic and geological factors. A model based on Kudryavtsev’s formulas is used to study the potential changes of ALT in the permafrost regions on the QTP. Maps of ALT for the year 2049 and 2099 on the QTP are projected under GCM scenarios. Results indicate that ALT will increase with the rising air temperature. ALT may increase by 0.1–0.7 m for the year 2049 and 0.3–1.2 m for the year 2099. The average increment of ALT is 0.8 m with the largest increment of 1.2 m under the A1F1 scenario and 0.4 m with the largest increment of 0.6 m under the B1 scenario during the twenty-first century. ALT changes significantly in sporadic permafrost regions, while in the continuous permafrost regions of the inland plateau ALT change is relatively smaller. The largest increment of ALT occurs in the northeastern and southwestern plateaus under both scenarios because of higher ground temperatures and lower soil moisture content in these regions.


Permafrost Active layer The Qinghai–Tibet Plateau Climate change 



The authors express gratitude to the anonymous reviewers for their constructive comments and suggestions and are also grateful for the help of colleagues in the Cryosphere Research Station on Qinghai–Xizang Plateau. This research is supported by the Global Change Research Program of China (2010CB951404) and the National Natural Science Foundation of China (Nos. 40830533; 41101069).


  1. Akerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process 19:279–292CrossRefGoogle Scholar
  2. Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Glob Planet Change 15:61–77CrossRefGoogle Scholar
  3. Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (CALM) program: research design and initial results. Polar Geogr 24:165–253CrossRefGoogle Scholar
  4. Burn CR (1998) The active layer: two contrasting definitions. Permafr Periglac Process 9:411–416CrossRefGoogle Scholar
  5. Chen W, Zhang Y, Cihlar J, Smith SL, Riseborough DW (2003) Changes in soil temperature and active layer thickness during the twentieth century in a region in western Canada. J Geophys Res 108(D22):4696. doi: 10.1029/2002JD003355 Google Scholar
  6. Cheng G (1979) Difference between Qinghai-Tibet Plateau permafrost and north Canada permafrost. J Glaciol Geocryol 2:39–43 (in Chinese with English abstract)Google Scholar
  7. Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112:F02S03. doi: 10.1029/2006JF000631
  8. Cheng G, Huang X, Kang X (1993) Recent permafrost degradation along the Qinghai-Tibet Highway. In: Permafrost sixth international conference proceedings, vol 2. South China University of Technology Press, Wushan, pp 1010–1013Google Scholar
  9. Frauenfeld OW, Zhang TJ, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi: 10.1029/2003JD004245 CrossRefGoogle Scholar
  10. Hinzman LD, Bettez ND, Bolton WR et al (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72:251–298Google Scholar
  11. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  12. Jin H, Li S, Cheng G, Wang S, Li X (2000) Permafrost and climatic change in China. Glob Planet Change 26:387–404CrossRefGoogle Scholar
  13. Jin H, Zhao L, Wang SL, Jin R (2006) Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway. Sci China (Ser D) 49:1170–1183CrossRefGoogle Scholar
  14. Jin H, Yu Q, Wang S, Lü L (2008) Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol 53:317–333CrossRefGoogle Scholar
  15. Kane DL, Hinzman LD, Zarling JP (1991) Thermal response of the active layer in a permafrost environment to climatic warming. Cold Reg Sci Technol 19:111–122CrossRefGoogle Scholar
  16. Kudryavtsev VA, Garagulya LS, Kondrat’yeva KA, Melamed VG (1974) Fundamentals of frost forecasting in geological engineering investigations. Cold Regions Research and Engineering Laboratory, HanoverGoogle Scholar
  17. Li X, Cheng G (1999) A GIS-aided response model of high altitude permafrost to global change. Sci China (Ser D) 42:72–79Google Scholar
  18. Li S, Cheng G, Guo D (1996) The future thermal regime of numerical simulating permafrost on Qinghai-Tibet Plateau, China, under climate warming. Sci China (Ser D) 39:434–441Google Scholar
  19. Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008) Cryospheric change in China. Glob Planet Change 62:210–218CrossRefGoogle Scholar
  20. Ling F, Zhang T (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg Sci Technol 38:1–15CrossRefGoogle Scholar
  21. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742CrossRefGoogle Scholar
  22. Lunardini VJ (1996) Climatic warming and the degradation of warm permafrost. Permafr Periglac Process 7:311–320CrossRefGoogle Scholar
  23. Mackay JR (1995) Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada. Arct Alp Res 27:323–336CrossRefGoogle Scholar
  24. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan Mountains, Central Asia. Glob Planet Change 56:311–327CrossRefGoogle Scholar
  25. Michaelson GJ, Ping CL, Kimble JM (1996) Carbon storage and distribution in tundra soils of Arctic Alaska, U.S.A. Arct Alp Res 28:414–424CrossRefGoogle Scholar
  26. Nan Z, Li S, Cheng G (2005) Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Sci China (Ser D) 48:797–804CrossRefGoogle Scholar
  27. Nelson FE, Anisimov OA (1993) Permafrost zonation in Russia under anthropogenic climatic change. Permafr Periglac Process 4:137–148CrossRefGoogle Scholar
  28. Nelson FE, Shiklomanov NI, Mueller GR (1997) Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, U.S.A. Arct Alp Res 29:367–378CrossRefGoogle Scholar
  29. Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890CrossRefGoogle Scholar
  30. Oelke C, Zhang T (2007) Modeling the active-layer depth over the Tibetan Plateau. Arct Antarct Alp Res 39(4):714–722CrossRefGoogle Scholar
  31. Pang Q, Cheng G, Li S, Zhang W (2009) Active layer thickness calculation over the Qinghai–Tibet Plateau. Cold Reg Sci Technol 57:23–28CrossRefGoogle Scholar
  32. Riseborough D, Shiklomanov N, Etzelmuller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modeling. Permafr Periglac Process 19:137–156CrossRefGoogle Scholar
  33. Romanovsky VE, Osterkamp TE (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8:1–22CrossRefGoogle Scholar
  34. Sazonova TS, Romanovsky VE (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Process 14:125–139CrossRefGoogle Scholar
  35. Slater AG, Pitman AJ, Desborough CE (1998) Simulation of freeze-thaw cycles in a general circulation model land surface scheme. J Geophys Res 103:11303–11312CrossRefGoogle Scholar
  36. Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process 13:1–15CrossRefGoogle Scholar
  37. Wang S, Jin H, Li S, Zhao L (2000) Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafr Periglac Process 11:43–53CrossRefGoogle Scholar
  38. Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China (Ser D) 49:1156–1169CrossRefGoogle Scholar
  39. Woo MK, Arain MA, Mollinga M, Yi S (2004) A two-directional freeze and thaw algorithm for hydrologic and land surface modeling. Geophys Res Lett 31:L12504. doi: 10.1029/2004GL019475 CrossRefGoogle Scholar
  40. Wu Q, Liu Y (2004) Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Reg Sci Technol 38:85–92CrossRefGoogle Scholar
  41. Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan plateau. J Geophys Res 113:D13108. doi: 10.1029/2007JD009539 CrossRefGoogle Scholar
  42. Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai–Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. doi: 10.1029/2009JD012974 CrossRefGoogle Scholar
  43. Wu Q, Li X, Li W (2000) The prediction of permafrost change along the Qinghai-Tibet Highway, China. Permafr Periglac Process 11:371–376CrossRefGoogle Scholar
  44. Wu Q, Shen Y, Shi B (2003) Relationship between frozen soil together with water-heat process and ecological environment in the Tibetan Plateau. J Glaciol Geocryol 25:250–254 (in Chinese with English abstract)Google Scholar
  45. Wu J, Sheng Y, Yu H, Li J (2007) Permafrost in the middle-east section of Qilian Mountains: characters of permafrost. J Glaciol Geocryol 29:426–432 (in Chinese with English abstract)Google Scholar
  46. Yang J, Ding Y, Chen R (2006) Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ Geol 50:313–322CrossRefGoogle Scholar
  47. Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang D, Ye H, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi: 10.1029/2004JD005642 CrossRefGoogle Scholar
  48. Zhao L, Ping CL, Yang DQ, Cheng GD, Ding YJ, Liu SY (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Glob Planet Change 43:19–31CrossRefGoogle Scholar
  49. Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafr Periglac Process 21:198–207CrossRefGoogle Scholar
  50. Zimov SA, Edward AG, Schuur FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar
  51. Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chuprynin VI, Chapin FS (2009) Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys Res Lett 36:L02502. doi: 10.1029/2008GL036332 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Qiangqiang Pang
    • 1
  • Lin Zhao
    • 1
  • Shuxun Li
    • 1
  • Yongjian Ding
    • 1
  1. 1.Cryosphere Research Station on Qinghai-Xizang Plateau, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations