Advertisement

Environmental Earth Sciences

, Volume 65, Issue 5, pp 1439–1457 | Cite as

Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine

  • Jens-Olaf DelfsEmail author
  • Frank Blumensaat
  • Wenqing Wang
  • Peter Krebs
  • Olaf Kolditz
Special Issue

Abstract

This paper presents the hydrological coupling of the software framework OpenGeoSys (OGS) with the EPA Storm Water Management Model (SWMM). Conceptual models include the Saint Venant equation for river flow, the 2D Darcy equations for confined and unconfined groundwater flow, a two-way hydrological coupling flux in a compartment coupling approach (conductance concept), and Lagrangian particles for solute transport in the river course. A SWMM river–OGS aquifer inter-compartment coupling flux is examined for discharging groundwater in a systematic parameter sensitivity analysis. The parameter study involves a small perturbation (first-order) sensitivity analysis and is performed for a synthetic test example base-by-base through a comprehensive range of aquifer parametrizations. Through parametrization, the test cases enables to determine the leakance parameter for simulating streambed clogging and non-ocillatory river-aquifer water exchange rates with the sequential (partitioned) coupling scheme. The implementation is further tested with a hypothetical but realistic 1D river–2D aquifer model of the Poltva catchment, where discharging groundwater in the upland area affects the river–aquifer coupling fluxes downstream in the river course (propagating feedbacks). Groundwater contribution in the moving river water is numerically determined with Lagrangian particles. A numerical experiment demonstrates that the integrated river–aquifer model is a serviceable and realistic constituent in a complete compartment model of the Poltva catchment.

Keywords

Integrated surface–subsurface flow modelling Urban water Conductance concept Sensitivity analysis Random walk particle tracking (RWPT) Poltva basin (Western Ukraine) 

Notes

Acknowledgments

This work was funded by the German Ministry of Education and Research (BMBF) project “IWAS—International Water Research Alliance Saxony” (Project No. 02WM1027).

References

  1. Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—Système Hydrologique Européen, ‘SHE’, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1):45–59CrossRefGoogle Scholar
  2. Abdul AS, Gillham RW (1989) Field studies of the effects of the capillary fringe on streamflow generation. J Hydrol 112:1–18CrossRefGoogle Scholar
  3. Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J. doi: 10.1007/s10040-009-0500-9
  4. Anderson MG, Burt PT (1978) The role of topography in controlling throughflow generation. Earth Surf Proc 3:331–344CrossRefGoogle Scholar
  5. Bailly-Comte V, Jourde H, Pistre S (2009) Conceptualization and classification of groundwater–surface water hydrodynamic interactions in karst watersheds: case of the karst watershed of the Coulazou River (Southern France). J Hydrol 376:456–462CrossRefGoogle Scholar
  6. Berkowitz B, Kosakowski G, Margolin G, Scher H (2001) Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Groundwater 39(4):593–604Google Scholar
  7. Beven KJ (2002) Towards a coherent philosophy for modelling the environment. Proc R Soc Lond A 458:1–20CrossRefGoogle Scholar
  8. Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69CrossRefGoogle Scholar
  9. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2003) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29(2):839–850CrossRefGoogle Scholar
  10. Bhallamudi SM, Panday S, Huyakorn PS (2003) Sub-timing in fluid flow and transport simulations. Adv Water Resour 26(5):477–489CrossRefGoogle Scholar
  11. Bitteli M, Tomei F, Pistocchi A, Flury M, Boll J, Brooks ES, Antolini G (2010) Development and testing of a physically based, three-dimensional model of surface and subsurface hydrology. Adv Water Resour 33:106–122CrossRefGoogle Scholar
  12. Blumensaat F, Trackner J, Hoeft S, Krebs P (2009) Quantifying effects of interacting optimisation measures in urban drainage systems. Urban Water J 6(2):93–105CrossRefGoogle Scholar
  13. Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. J Environ Earth Sci. doi: 10.1007/s12665-011-1146-1 (this issue)
  14. Böhm U, Keuler K, Österle H, Kücken M, Hauffe D (2008) Quality of a climate reconstruction for the CADSES region. MetZ special issue Regional climate modeling with COSMO-CLM (CCLM) 17(8):477–485Google Scholar
  15. Botter G, Bertuzzo E, Rinaldo A (2010) Transport in the hydrologic response: travel time distributions, soil moisture dynamics, and the old water paradox. Water Resour Res 46:W03514. doi: 10.1029/2009WR008371 CrossRefGoogle Scholar
  16. Boussinesq J (1904) Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dan le sol et sur le débit des sources. J Math Pures Appl 10:5–78Google Scholar
  17. Breuer L, Huisman JA, Willems P, Bormann H, Bronstert A, Croke BFW, Frede H-G, Gräff T, Hubrechts L, Jakeman AJ, Kite G, Lanini J, Leavesley G, Lettenmaier DP, Lindström G, Seibert J, Sivapalan M, Viney NR (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: model intercomparison with current land use. Adv Water Resour 32(2):129–146CrossRefGoogle Scholar
  18. Brookfield AE, Sudicky EA, Park YJ, Conant B (2009) Thermal transport modelling in a fully integrated surface/subsurface framework. Hydrol Process 23(15):2150–2164CrossRefGoogle Scholar
  19. Brunner P, Cook PG, Simmons CT (2009) Hydrologic controls on disconnection between surface water and groundwater. Water Resour Res 45. doi: 10.1029/2008WR006953
  20. Butler JJ, Zlotnik VA, Tsou MS (2001) Drawdown and stream depletion produced by pumping in the vicinity of a finite-width stream of shallow penetration. Groundwater 36(5):651–659Google Scholar
  21. Buttle JM, Vonk AM, Taylor CH (1995) Applicability of isotopic hydrograph separation in a suburban basin during snowmelt. Hydrol Process 9:197–211CrossRefGoogle Scholar
  22. Cacuci DG, Weber CF, Oblov EM, Marable JH (1980) Sensitivity theory for general systems of nonlinear equations. Nucl Sci Eng 75:88–110Google Scholar
  23. Camporese M, Paniconi C, Puti M, Orlandi S (2010) Sensitivity theory for general systems of nonlinear equations. Water Resour Res 46. doi: 10.1029/2008WR007536
  24. Cardenas MB, Wilson JL (2007) Effects of current-bed form induced fluid flow on the thermal regime of sediments. Water Resour Res 43:W08431. doi: 10.1029/2006WR005343 CrossRefGoogle Scholar
  25. Centler F, Shao H, deBiase C, Park C-H, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating subsurface processes. Comput Geosci 36:397–405CrossRefGoogle Scholar
  26. Chen J-W, Hsieh H-H, Yeh H-F, Lee C-H (2010) The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan. Environ Earth Sci 59:1297–1307CrossRefGoogle Scholar
  27. Chen X, Chen X (2003) Sensitivity analysis and determination of streambed leakance and aquifer hydraulic properties. J Hydrol 284:270–284CrossRefGoogle Scholar
  28. Christensen S (2000) On the estimation of stream flow depletion parameters by drawdown analysis. Groundwater 38(5):726–734Google Scholar
  29. Darcy HPG (1856) Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, ParisGoogle Scholar
  30. Dawson C (2008) A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow. Comput Geosci 12:451–472CrossRefGoogle Scholar
  31. de Dreuzy J-R, de Boiry P, Pichot G, Davy P (2010) Use of power averaging for quantifying the influence of structure organization on permeability upscaling in on-lattice networks under mean parallel flow. Water Resour Res 46:W08519. doi: 10.1029/2009WR008769 CrossRefGoogle Scholar
  32. Delfs J-O, Kalbus E, Park C-H, Kolditz O (2009) A physically based model concept for transport modelling in coupled hydrosystems. Grundwasser 14(3):219–235CrossRefGoogle Scholar
  33. Delfs J-O, Park C-H, Kolditz O (2009) A sensitivity analysis of Hortonian flow. Adv Water Resour 32(9):1386–1395CrossRefGoogle Scholar
  34. Dunne T, Black R (1970) Partial area contributions to storm runoff in a small new England watershed. Water Resour Res 6:1296–1311CrossRefGoogle Scholar
  35. Ebel BA, Mirus BA, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water-groundwater interactions: parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23:1949–1959CrossRefGoogle Scholar
  36. Engelhardt I, Piepenbrink M, Trauth N, Stadler S, Kludt C, Schulz M, Schüth C, Ternes TA (2010) Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. J Hydrol 400(1–2):255–266Google Scholar
  37. Ertel A, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova Berendonk T, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi: 10.1007/s12665-011-1289-0 (this issue)
  38. Ferrari S, Saleri F (2004) A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. Math Model Numer Anal 38(2):211–234CrossRefGoogle Scholar
  39. Freeze RA, Harlan RL (1969) Blueprint for a physically based, digitally-simulated hydrological response model. J Hydrol 9:237–258CrossRefGoogle Scholar
  40. Frei S, Fleckenstein JH, Kollet SJ, Maxwell RM (2009) Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375(3–4):383–393CrossRefGoogle Scholar
  41. Gaukroger AM, Werner AD (2011) On the Panday and Huyakorn surface–subsurface hydrology test case: analysis of internal flow dynamics. Hydrol Process 25:2085–2093CrossRefGoogle Scholar
  42. Gerke HH, vanGenuchten MT (1993) A dual-porosity model for simulating preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319CrossRefGoogle Scholar
  43. Green WH, Ampt GA (1911) Studies on soil physics: 1. Flow of air and water through soils. J Agric Sci 4:1–24CrossRefGoogle Scholar
  44. Griggs JE, Peterson FL (1993) Groundwater-flow dynamics and development strategies at the atoll scale. Groundwater 31(2):209–220Google Scholar
  45. Grundmann J, Schütze NS, Schmitz G-H, Al Shaqsi S (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi: 10.1007/s12665-011-1253-z (this issue)
  46. Hantush MS (1965) Wells near streams with semi-pervious beds. J Geophys Res 70(2):2829–2838CrossRefGoogle Scholar
  47. Hartwig M, Theuring P, Rode M, Borchardt D (2011) Sources of suspended sediments and its implications on ecosystem functions in the Kharaa river (Mongolia). Environ Earth Sci. doi: 10.1007/s12665-011-1198-2 (this issue)
  48. Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Proceedings of the international symposium on forest hydrology, pp 275–290Google Scholar
  49. Horlemann L, Dombrowsky I (2011) Institutionalizing IWRM in developing and transition countries—the case of Mongolia. Environ Earth Sci. doi: 10.1007/s12665-011-1213-7 (this issue)
  50. Horton RE (1940) An approach toward physical interpretation of infiltration capacity. Soil Sci Soc Am 5:399–417CrossRefGoogle Scholar
  51. Hoteit H, Mose R, Younes A, Lehmann F, Ackerer P (2002) Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math Geol 34(4):435–456CrossRefGoogle Scholar
  52. Hunt B (1999) Unsteady stream depletion from groundwater pumping. Groundwater 37(1):98–102Google Scholar
  53. Hunt B, Weir J, Clausen B (2001) A stream depletion field experiment. Groundwater 39(2):283–289Google Scholar
  54. Ibisch RB, Borchardt D, Seydell I (2009) Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Fundam Appl Limnol 61:67–81Google Scholar
  55. Ivanov VY, Bras RL, Vivoni ER (2008) Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res 44:W03429. doi: 10.1029/2006WR005588 CrossRefGoogle Scholar
  56. Jones JP, Sudicky EA, Brookfield AE, Park YJ (2006) An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour Res 42:W02407CrossRefGoogle Scholar
  57. Kabala ZJ (2001) Sensitivity analysis of a pumping test on a well with wellbore storage and skin. Adv Water Resour 24(5):483–504CrossRefGoogle Scholar
  58. Kabala ZJ, Milly PCD (1990) Sensitivity analysis of flow in unsaturated heterogeneous porous media: theory, numerical model, and its verification. Water Resour Res 26(4):593–610Google Scholar
  59. Kalbacher T, Kolditz O (2011) The IWAS toolbox: Software coupling for integrated water resources management. Environ Earth Sci. doi: 10.1007/s12665-011-1270-y (this issue)
  60. Kalbacher T, Schneider CL, Wang W, Hildebrandt A, Attinger S, Kolditz O (2011) Parallelized modelling of soil-coupled 3d water uptake of multiple root systems with automatic adaptive time step control. Vadose Zone J. doi: 10.2136/vzj2010.0099
  61. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci. doi: 10.1007/s12665-011-1330-3 (this issue)
  62. Kampf SK, Burges SJ (2007) A framework for classsifying and comparing distributed hillslope and catchment hydrologic models. Water Resour Res 43:W05423. doi: 10.1029/2006WR005370 CrossRefGoogle Scholar
  63. Karpf C, Krebs P (2011) Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Res 45(10):3129–3136CrossRefGoogle Scholar
  64. Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874CrossRefGoogle Scholar
  65. Kolditz O, Delfs J-O, Bürger CM, Beinhorn M, Park C-H (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinf 10(3):227–244CrossRefGoogle Scholar
  66. Kolditz O, Du Y, Bürger CM, Delfs J-O, Kuntz D, Beinhorn M, Hess M, Wang W, van der Grift B, teStroet C (2007) Development of a regional hydrologic soil model and application to the Beerze-Reusel drainage basin. J Environ Pollut 148:855–866CrossRefGoogle Scholar
  67. Kolditz O, Shao H (2008) (eds) GeoSys/RockFlow—developer benchmark book-V.4.7. Technical report 15, Helmholtz Centre for Environmental Research, UFZ Leipzig, GermanyGoogle Scholar
  68. Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958CrossRefGoogle Scholar
  69. Kollet SJ, Maxwell RM, Woodward CW, Smith S, Vanderborgth J, Vereecken H, Simmer C (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46:W04201. doi: 10.1029/2009WR008730 CrossRefGoogle Scholar
  70. Krause S, Bronstein A, Zehe E (2007) Groundwater-surface water interactions in a North German lowland floodplain—implications for the river discharge dynamics and riparian water balance. J Hydrol 347:404–417CrossRefGoogle Scholar
  71. Leidel M, Niemann S, Hagemann N (2011) Capacity development as key factor for integrated water resources management (IWRM)—improving water management in the Western Bug River Basin, Ukraine. Environ. Earth Sci. doi: 10.1007/s12665-011-1223-5 (this issue)
  72. Lemieux JM, Sudicky EA, Peltier WR, Tarasov L (2008) Simulating the impact of glaciations on continental groundwater flow systems I. Relevant processes and model formulation. J Geophys Res. doi: 10.1029/2007JF000928
  73. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  74. Li Q, Unger A, Sudicky E (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357(3–4):317–336CrossRefGoogle Scholar
  75. Lindgren GA, Destouni G, Miller AV (2004) Solute transport through the integrated groundwater-stream system of a catchment. Water Resour Res 40:W03511. doi: 10.1029/2003WR002765 CrossRefGoogle Scholar
  76. Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel FH, Gaffron A, Hebben N, Höfer R, Makesching F, Neder K, Roig LH, Steiniger B, Strauch M, Walde D, Wei H, Worch E, Wummel J (2011) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil—climate, land use and water resources. Environ. Earth Sci. doi: 10.1007/s12665-011-1219-1 (this issue)
  77. Mannina G, Viviani G (2010) Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches. Water Sci Technol 62(10):2301–2312CrossRefGoogle Scholar
  78. Manning R (1891) On the flow of water in open channels and pipes. Trans Inst Civ Eng Ireland 20:161–207Google Scholar
  79. Marino MA (1975) Digital simulation model of aquifer response to stream discharge fluctuation. J Hydrol 25:51–58CrossRefGoogle Scholar
  80. Maxwell RM, Kollet SJ (2008) The interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669CrossRefGoogle Scholar
  81. Mazzilli N, Guinot V, Jourde H (2010) Sensitivity analysis of two-dimensional steady-state aquifer flow equations. Implications for groundwater flow model calibration and validation. Adv Water Res 33(8):905–922CrossRefGoogle Scholar
  82. McCuen RH (1973) The role of sensitivity analysis in hydrologic modeling. J Hydrol 18(1):37–53CrossRefGoogle Scholar
  83. McDonnel JJ (1990) Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour Res 26(4):2821–2832CrossRefGoogle Scholar
  84. McGlynn BL, McDonnel JJ (2003) Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour Res 11:1310. doi: 10.1029/2003WR002091 CrossRefGoogle Scholar
  85. Miglio E, Quarteroni A, Saleri F (2003) Coupling of free surface and groundwater flows. Comput Fluids 32(1):73–83Google Scholar
  86. Mittchel VG, Mein RG, McMahon TA (2001) Modelling the urban water cycle. Env Model Softw 16:615–629CrossRefGoogle Scholar
  87. Morita M, Yen BC (2002) Modeling of conjunctive two-dimensional surface-three-dimensional subsurface flows. J Hydraul Eng 128(2):184–200CrossRefGoogle Scholar
  88. Muleta MK, Nicklow JW (2005) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 306(1–4):127–145CrossRefGoogle Scholar
  89. O’Connor T, Rossi J (2009) Monitoring of a best management practice wetland before and after maintenance. J Hydraul Eng 135(11):1145–1154Google Scholar
  90. Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in an alluvial aquifer: an improved loosing-stream package of MODFLOW. J Hydrol 264:69–86CrossRefGoogle Scholar
  91. Owen SJ, Jones NL, Holland JP (1996) A comprehensive modeling environment for the simulation of groundwater flow and transport. Eng Comput 12:235–242CrossRefGoogle Scholar
  92. Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27:361–382CrossRefGoogle Scholar
  93. Park C-H, Beyer C, Bauer S, Kolditz O (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environ Geol 55:755–766CrossRefGoogle Scholar
  94. Park Y-J, Sudicky EA, Panday S (2008) Application of implicit sub-time stepping to simulate flow and transport in fractured porous media. Adv Water Resour 31(7):995–1003CrossRefGoogle Scholar
  95. Park Y-J, Sudicky EA, Panday S, Matanga G (2009) Implicit sub-time stepping for solving the nonlinear equations of flow in an integrated surface–subsurface system. Vadose Zone J. 8(4). doi: 10.2136/vzj2009.001
  96. Pavlik D, Söhl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. doi: 10.1007/s12665-011-1081-1 (this issue)
  97. Pfletschinger H, Engelhardt I, Piepenbrink M, Königer F, Schuhmann R, Kallioras A, Schüth C (2011) Soil column experiments to quantify vadose zone water fluxes in arid settings. Environ Earth Sci. doi: 10.1007/s12665-011-1257-8 (this issue)
  98. Philip JR (1957) The theory of infiltration: 6. Effect of water depth over soil. Soil Sci 85:278–286CrossRefGoogle Scholar
  99. Pichot G, Erhel J, Dreuzy JR (2010) A mixed hybrid mortar method for solving flow in discrete fracture networks. Appl Anal 89((10):1629–1643CrossRefGoogle Scholar
  100. Ponce VM, Ruh-Ming L, Simmons DB (1978) Applicability of kinematic and diffusion models. J Hydraul Div ASCE 104:353–360Google Scholar
  101. Qu Y, Duffy CJ (2007) A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour Res 43:W08419. doi: 10.1029/2006WR005752 CrossRefGoogle Scholar
  102. Rauch W, Bertrand-Krajewski JL, Krebs P, Mark O, Schilling W, Schütze M, Vanrolleghem PA (2002) Determinisitic modelling of integrated urban drainage systems. Water Sci Technol 45(3):81–94Google Scholar
  103. Ray AB, Selvakumar A, Tafuri AN (2006) Removal of selected pollutants from aqueous media by hardwood mulch. J Hazard Mater 136(2):213–218CrossRefGoogle Scholar
  104. Regnier P, O’Kane J, Steefel C, Vanderborght J (2002) Modeling complex multicomponent reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl Math Model 26:913–927CrossRefGoogle Scholar
  105. Reuven Y, Smooke MD, Rabitz H (1987) Sensitivity analysis of one-dimensional mixed initial-boundary value problems: applications to freely propagating premixed laminar flames. J Sci Comput 2(4):345–370CrossRefGoogle Scholar
  106. Rinaldo A, Botter G, Bertuzzo E, Uccelli A, Settin T, Marani M (2006) Transport at basin scales: 1. Theoretical framework. Hydrol Earth Syst Sci 10(6):873–887CrossRefGoogle Scholar
  107. Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ. Earth Sci. doi: 10.1007/s12665-011-1230-6 (this issue)
  108. Rossman LA (2006) Storm water management model quality assurance report: dynamic wave flow routing. Technical report. Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH Google Scholar
  109. Rossman LA (2010) Storm water management model user’s manual version 5.0. Technical report. Water Supply and Water Resources Divison, National Risk Management Research Laboratory Cincinnati, OH Google Scholar
  110. Roubinet D, Liu H-H, de Dreuzy J-R (2010) A new particle tracking approach to simulating transport in heterogeneous fractured porous media. Water Resour Res 46:W11507. doi: 10.1029/2010WR009371 CrossRefGoogle Scholar
  111. Rushton KR, Tomlinson LM (1979) Possible mechanisms for leakance between aquifers and rivers. J Hydrol 40:49–65CrossRefGoogle Scholar
  112. Samaniego L, Kumar R, Attinger S (2010) Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resour Res 46(7):W0250Google Scholar
  113. Sänger N, Kitanidis PK, Street RL (2004) A numerical study of surface–subsurface exchange processes at a riffle-pool pair in the Lahn River, Germany. Water Resour Res 41:W12424. doi: 10.1029/2004WR003875 CrossRefGoogle Scholar
  114. Sanz E, Voss CI (2005) Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour 29(3):439–457CrossRefGoogle Scholar
  115. Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2011) A methodology for dealing with regional change in integrated water resources management. Environ. Earth Sci.  10.1007/s12665-011-0916-0 (this issue)
  116. Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk T (2011) The comparison and suitability of assessment methods to identify the hydro-morphological status of a transboundary river in the Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1218-2 (this issue)
  117. Schneider CL, Attinger S, Delfs J-O, Hildebrandt A (2010) Implementing small scale processes at the soil–plant interface—the role of root architecture for calculating root water uptake. Hydrol Earth Syst Sci 14:279–289CrossRefGoogle Scholar
  118. Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures—implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319CrossRefGoogle Scholar
  119. Schütze N, Kloss S, Lennartz F, Bakri A, Schmitz GH (2011) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci. doi: 10.1007/s12665-011-1135-4 (this issue)
  120. Shao H, Dmytrieva SV, Kolditz O, Kulik DA, Pfingsten W, Kosakowski G (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24(7):1287–1300CrossRefGoogle Scholar
  121. Shen CP, Phanikumar MS (2010) A process-based distributed model based on a large-scale method for surface–subsurface coupling. Adv Water Resour 33(12):1524–1541CrossRefGoogle Scholar
  122. Sigel K, Altantuul K, Basandorj D (2011) Household needs and demand for improved water supply and sanitation in peri-urban ger areas: the case of Darkhan, Mongolia. Environ Earth Sci. doi: 10.1007/s12665-011-1221-7 (this issue)
  123. Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng ASCE 7:270–292CrossRefGoogle Scholar
  124. Sklash MG, Farvolden RN (1997) The role of groundwater in storm runoff. J Hydrol 43:45–65CrossRefGoogle Scholar
  125. Smith JA, Baeck ML, Meierdierks KL, Nelson PA (2005) Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour Res 41:W10413. doi: 1029/2004WR003712 CrossRefGoogle Scholar
  126. Smith RE, Woolhiser DA (1971) Overland flow on an infiltrating surface. Water Resour Res 7(4):899–913CrossRefGoogle Scholar
  127. Sophocleus M (2002) Interactions between groundwater and surface water: the state of the science. J Hydrol 10(1):52–67Google Scholar
  128. Stonedahl SH, Harvey JW, Wörman A, Salehin M, Packman AJ (2010) A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour Res 46:W12539. doi: 10.1029/2009WR008865 CrossRefGoogle Scholar
  129. Strauch G, Möder M, Wennrich R, K KO, Gläser HR, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soils Sediments 8(1):23–33CrossRefGoogle Scholar
  130. Sulaiman IM, Xiao L, Lal AA (1999) Evaluation of Cryptosporidium parvum genotyping techniques. Appl Environ Microbiol 65(10):4431–4435Google Scholar
  131. Sulis M, Meyerhoff SB, Paniconi C, Maxwell RM, Putti M, Kollet SJ (2010) A comparison of two physics-based numerical models for simulating surface water-groundwater interactions. Adv Water Resour 33:456–467CrossRefGoogle Scholar
  132. Sulis M, Paniconi C, Rivard C, Harvey R, Chaumont D (2011) Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface–subsurface interactions and comparison with a land surface model. Water Resour Res 47:W01513. doi: 10.1029/2010WR009167 CrossRefGoogle Scholar
  133. Sun F, Shao H, Kalbacher T, Wang W, Yang Z, Huang Z, Kolditz O (2011) Groundwater drawdown at Nankou site of Beijing Plain: model development and calibration. Environ Earth Sci. doi: 10.1007/s12665-011-0957-4
  134. Sun N, Sun N-Z, Elimelech M, Ryan JN (2001) Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resour Res 37(2):209–222CrossRefGoogle Scholar
  135. Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger KH, Schwärzel K (2011) Estimation of spatially distributed soil information. Dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1197-3 (this issue)
  136. Teutsch G, Krüger E (2010) Water science alliance—white paper: priority research fields. UFZ Leipzig, Germany. http://www.watersciencealliance.org
  137. Theis CV (1941) The effect of a well on the flow of a nearby stream. AGU Transact 22(3):734–738Google Scholar
  138. Therrien R, McLaren RG, Sudicky EA, Panday SM (2004) Hydrosphere, a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Technical report, Université Laval and University of Waterloo, CanadaGoogle Scholar
  139. van der Steen P, Howe C (2009) Managing water in the city of the future; strategic planing and science. Rev Environ Sci Biotechnol 8:115–120CrossRefGoogle Scholar
  140. van Werkhoven K, Wagener T, PM Reed P, Tang Y (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Res 32(8):1154–1169CrossRefGoogle Scholar
  141. VanderKwaak JE, Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res 37(4):999–1013CrossRefGoogle Scholar
  142. vanGenuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci Soc Am J 40:473–480CrossRefGoogle Scholar
  143. vanGriensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324(1-4):10–23CrossRefGoogle Scholar
  144. Vasyukova E, Uhl W, Braga F, Neder K (2011) Challenges of drinking water production from surface water sources in Brasilia DF, Brazil. Environ Earth Sci. doi: 10.1007/s12665-011-1308-1 (this issue)
  145. Vetter S, Schaffrath D, Bernhofer C (2011) Spatial Simulation of evapotranspiration of semi-arid Inner Mongolian grassland based on MODIS and eddy covariance data. Environ Earth Sci. doi: 10.1007/s12665-011-1187-5 (this issue)
  146. Voloshyn P (2010) Personal communicationGoogle Scholar
  147. Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69(1):162–201CrossRefGoogle Scholar
  148. Wang W, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641CrossRefGoogle Scholar
  149. Weiler M, McDonnel JJ (2007) Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour Res 43. doi: 10.1029/2006WR004867
  150. Whitham GB (1974) Linear and nonlinear waves. Wiley, New YorkGoogle Scholar
  151. Zhu C, Leung LR, Gochis D, Qian Y, Lettenmaier DP (2009) Evaluating the influence of antecedent soil moisture on variability of the North American monsoon precipitation in the coupled MM5/VIC modeling system. J Adv Model. Earth Syst 1. doi: 10.3894/JAMES.2009.1.13
  152. Zlotnik VA, Huang H (1999) Effect of shallow penetration and streambed sediments on aquifer response to stream stage fluctuations (analytical model). Groundwater 37(4):599–605Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jens-Olaf Delfs
    • 1
    Email author
  • Frank Blumensaat
    • 2
  • Wenqing Wang
    • 1
  • Peter Krebs
    • 2
  • Olaf Kolditz
    • 1
  1. 1.Department of Environmental InformaticsHelmholtz Centre for Environmental Research, UFZ LeipzigLeipzigGermany
  2. 2.Institute of Urban Water ManagementTechnical University of DresdenDresdenGermany

Personalised recommendations