Advertisement

Environmental Earth Sciences

, Volume 65, Issue 5, pp 1367–1380 | Cite as

The IWAS-ToolBox: Software coupling for an integrated water resources management

  • Thomas Kalbacher
  • Jens-Olaf Delfs
  • Haibing Shao
  • Wenqing Wang
  • Marc Walther
  • Luis Samaniego
  • Christoph Schneider
  • Rohini Kumar
  • Andreas Musolff
  • Florian Centler
  • Feng Sun
  • Anke Hildebrandt
  • Rudolf Liedl
  • Dietrich Borchardt
  • Peter Krebs
  • Olaf Kolditz
Special Issue

Abstract

Numerical modeling of interacting flow and transport processes between different hydrological compartments, such as the atmosphere/land surface/vegetation/soil/groundwater systems, is essential for understanding the comprehensive processes, especially if quantity and quality of water resources are in acute danger, like e.g. in semi-arid areas and regions with environmental contaminations. The computational models used for system and scenario analysis in the framework of an integrated water resources management are rapidly developing instruments. In particular, advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. It is certainly true that for each hydro-compartment, there exists many excellent simulation codes, but traditionally their development has been isolated within the different disciplines. A new generation of coupled tools based on the profound scientific background is needed for integrated modeling of hydrosystems. The objective of the IWAS-ToolBox is to develop innovative methods to combine and extend existing modeling software to address coupled processes in the hydrosphere, especially for the analysis of hydrological systems in sensitive regions. This involves, e.g. the provision of models for the prediction of water availability, water quality and/or the ecological situation under changing natural and socio-economic boundary conditions such as climate change, land use or population growth in the future.

Keywords

Coupling Modeling Surface–subsurface Soil–root water flow Reactive transport Density-dependent flow 

Notes

Acknowledgments

This work was supported by funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWAS—International Water Research Alliance Saxony” (Grant 02WM1027 and 02WM1028).

References

  1. Anderson MG, Burt TP (1985) Modelling strategies. Hydrological forecasting. Wiley, New York, pp 1–13Google Scholar
  2. Barry DA, Prommer H, Miller CT, Engesgaard P, Brun A, Zhen C (2002) Modelling the fate of oxidisable organic contaminants in groundwater. Adv Water Resour 25:945–983CrossRefGoogle Scholar
  3. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:1–14Google Scholar
  4. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  5. Bhallamudi SM, Panday S, Huyakorn PS (2003) Sub-timing in fluid flow and transport simulations. Adv Water Resour 26:477–489CrossRefGoogle Scholar
  6. Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. Environ Earth Sci. doi: 10.1007/s12665-011-1146-1 (this issue)
  7. Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin, p 414CrossRefGoogle Scholar
  8. Brun A, Engesgaard P (2002) Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development. J Hydrol 256:211–227CrossRefGoogle Scholar
  9. Centler F, Shao H, De Biase C, Park C-H, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36:397–405CrossRefGoogle Scholar
  10. Chaudhry MH (1993) Open-channel flow. Prentice-Hall, Englewood CliffsGoogle Scholar
  11. Cirpka OA, Valocchi AJ (2007) Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30:1668–1679CrossRefGoogle Scholar
  12. Cirpka OA, Valocchi AJ (2009) Reply to comments on “Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by H. Shao et al. Adv Water Resour 32(2):298–301CrossRefGoogle Scholar
  13. Clement TP, Sun Y, Hooker BS, Petersen JN (1998) Modeling multispecies reactive transport in ground water. Ground Water Monitor Remediation 18:79–92CrossRefGoogle Scholar
  14. De Bruijn R (1995) TDEM analysis of the Eastern Batinah. Hydrogeology Section Ministry of Water Resources, November 1995Google Scholar
  15. De Jong van Lier Q, van Dam JC, Metselaar K, de Jong R, Duijnisveld WHM (2008) Macroscopic root water uptake distribution using a matric flux potential approach. Vadose Zone J 7:1065–1078 Google Scholar
  16. Delfs J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1285-4 (this issue)
  17. DHI Water and Environment (2009) MIKE SHE. Hørsholm, DenmarkGoogle Scholar
  18. Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944CrossRefGoogle Scholar
  19. Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II—modelling of water transfer in the soil root-system with explicit account of flow within the root system—comparison with experiments. Plant Soil 283(1–2):99–117CrossRefGoogle Scholar
  20. Elder JW (1967) Transient convection in a porous medium. J Fluid Mech 27(3):609–623CrossRefGoogle Scholar
  21. Ertel A-M, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk T, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi: 10.1007/s12665-011-1289-0 (this issue)
  22. Fennema RJ, Chaudhry MH (1990) Explicit methods for two-dimensional unsteady free-surface flows. J Hydrol Eng ASCE 116(8):1013–1034CrossRefGoogle Scholar
  23. Forsyth PA, Wu YS, Pruess K (1995) Robust numerical methods for saturated–unsaturated flow with dry initial conditions in heterogeneous media. Adv Water Resour 18:25–38CrossRefGoogle Scholar
  24. Freeze RA, Harlan RL (1969) Blueprint for a physically-based, digitally-simulated hydrologic response model. J Hydrol 9:237–258CrossRefGoogle Scholar
  25. Frind EO (1982) Simulation of long-term transient density-dependent transport in groundwater. Adv Water Resour 5:73–97CrossRefGoogle Scholar
  26. Glover RE (1978) Transient ground water hydraulics. Monograph. Water Resources Publications, Fort CollinsGoogle Scholar
  27. Gottardi G, Venutelli M (1993) A control-volume finite-element model for two-dimensional overland flow. Adv Water Resour 16:277–284CrossRefGoogle Scholar
  28. Grundmann J, Schütze N, Schmitz G-H, Al Shaqsi S (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi: 10.1007/s12665-011-1253-z (this issue)
  29. Hartwig M, Theuring P, Rode M, Borchardt D (2011) Sources of suspended sediments and its implications on ecosystem functions in the Kharaa River (Mongolia). Environ Earth Sci. doi: 10.1007/s12665-011-1198-2 (this issue)
  30. Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. US Geol Surv Water Supply Pap 1613-C:C71–C84Google Scholar
  31. Herbert AW, Jackson CP, Lever DA (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour Res 24(10):1781–1795CrossRefGoogle Scholar
  32. Horlemann L, Dombrowsky I (2011) Institutionalizing IWRM in developing and transition countries—the case of Mongolia. Environ Earth Sci. doi: 10.1007/s12665-011-1213-7 (this issue)
  33. Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic Press, LondonGoogle Scholar
  34. Huyakorn PS, Springer SP, Guvanasen V, Wadsworth TD (1986) A three dimensional finite element model for simulating water flow in variably saturated porous media. Water Resour Res 22:1790–1808CrossRefGoogle Scholar
  35. HydroGeoLogic Inc (2006) MODHMS: a comprehensive MODFLOW-based hydrologic modeling system, version 3.0. HydroGeoLogic Incorporated, HerndonGoogle Scholar
  36. Javandel I, Doughty C, Tsang CF (1984) Groundwater transport: handbook of mathematical models. American Geophysical Union, Washington, DCGoogle Scholar
  37. Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1089CrossRefGoogle Scholar
  38. Jourabchi P, Van Cappellen P, Regnier P (2005) Quantitative interpretation of pH distributions in aquatic sediments: a reactive transport modeling approach. Am J Sci 305:919–956CrossRefGoogle Scholar
  39. Kalbacher T, Wang W, Kolditz O, Taniguchi T (2008) Parallelization concepts and applications for THM coupled finite element problems. J Environ Sci Sustain Soc 2:35–46CrossRefGoogle Scholar
  40. Kalbacher T, Schneider CL, Wang W, Hildebrandt A, Attinger S, Kolditz O (2011) Parallelized modelling of soil-coupled 3D water uptake of multiple root systems with automatic adaptive time step control. Vadose Zone J 10:727–735 doi: 10.2136/vzj2010.0099 Google Scholar
  41. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci. doi: 10.1007/s12665-011-1330-3 (this issue)
  42. Karypis G, Kumar V (1998) A parallel algorithm for multi-level graph partitioning and sparse matrix ordering. J Parallel Distrib Comput 48(1):71–95CrossRefGoogle Scholar
  43. Kizilova N (2004) Computational approach to optimal transport network construction in biomechanics. Lect Notes Comput Sci 3044:476–485CrossRefGoogle Scholar
  44. Kizilova N (2011) Optimal transport networks in nature. Series in mathematical biology and medicine, vol 10. World Scientific Publishing, SingaporeGoogle Scholar
  45. Kolditz O, Delfs JO, Bürger CM, Beinhorn M, Park C-H (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinformatics 10(3):227–244CrossRefGoogle Scholar
  46. Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958CrossRefGoogle Scholar
  47. Lakey R, Easton P, AI Hinai H (1995) Eastern Batinah resource assessment. Numerical modeling stage 1: data collation and analysis. Ministry of Water Resources, September 1995Google Scholar
  48. Leidel M, Niemann S, Hagemann N (2011) Capacity development as key factor for integrated water resources management (IWRM)—improving water management in the Western Bug River Basin, Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1223-5 (this issue)
  49. Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel FH, Gaffron A, Hebben N, Höfer R, Makesching F, Neder K, Roig LH, Steiniger B, Strauch M, Walde D, Weiß H, Worch E, Wummel J (2011) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil—climate, land use and water resources. Environ Earth Sci. doi: 10.1007/s12665-011-1219-1 (this issue)
  50. Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW: coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular GroundWater Flow Model (MODFLOW-2005). US Geological Survey Techniques and Methods 6–D1Google Scholar
  51. Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174CrossRefGoogle Scholar
  52. McDermott CI, Walsh R, Mettier R, Kosakowski G, Kolditz O (2009) Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13(3):349–361CrossRefGoogle Scholar
  53. Meysman JR, Middelburg JJ, Herman PMJ, Heip CHR (2003) Reactive transport in surface sediments I. Model complexity and software quality. Comput Geosci 29:291–300CrossRefGoogle Scholar
  54. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  55. Murphy EM, Ginn TR (2000) Modeling microbial processes in porous media. Hydrogeol J 8:142–158CrossRefGoogle Scholar
  56. Oldenburg CM, Pruess K (1995) Dispersive transport dynamics in a strongly coupled groundwater–brine flow system. Water Resour Res 31(2):289–302CrossRefGoogle Scholar
  57. Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Bot JL (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119CrossRefGoogle Scholar
  58. Panday S, Huyakorn PS, Therrien R, Nichols RL (1993) Improved three-dimensional finite-element techniques for field simulation of variably saturated flow and transport. J Contam Hydrol 12:3–33CrossRefGoogle Scholar
  59. Paniconi C, Marrocu M, Putti M, Verbunt M (2003) Newtonian nudging for a Richards equation-based distributed hydrological model. Adv Water Resour 26(2):161–178CrossRefGoogle Scholar
  60. Park C-H, Mustafa MA (2007) Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations. J Contam Hydrol 92(1–2):33–49CrossRefGoogle Scholar
  61. Pavlik D, Söhl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. doi: 10.1007/s12665-011-1081-1 (this issue)
  62. Pfingsten W (1996) Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium. Nuclear Technol 116(2):208–221Google Scholar
  63. Pfletschinger H, Engelhardt I, Piepenbrink M, Königer F, Schuhmann R, Kallioras A, Schüth C (2011) Soil column experiments to quantify vadose zone water fluxes in arid settings. Environ Earth Sci. doi: 10.1007/s12665-011-1257-8 (this issue)
  64. Prommer H, Barry DA, Zheng C (2003) Modflow/mt3dms-based reactive multicomponent transport modeling. Ground Water 41:247–257CrossRefGoogle Scholar
  65. Regnier P, O’Kane J, Steefel C, Vanderborght J (2002) Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl Math Model 26:913–927CrossRefGoogle Scholar
  66. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333CrossRefGoogle Scholar
  67. Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ Earth Sci. doi: 10.1007/s12665-011-1230-6 (this issue)
  68. Rossman LA (2007) Storm water management model user’s manual, EPA/600/R-05/040. US Environmental Protection Agency, CincinnatiGoogle Scholar
  69. Samaniego L, Kumar R, Jackisch C (2010) Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data. Hydrol Res (accepted for publication)Google Scholar
  70. Schäfer D, Schäfer W, Kinzelbach W (1998) Simulation of reactive processes related to biodegradation in aquifers: 1 Structure of the three-dimensional reactive transport model. J Contam Hydrol 31:167–186CrossRefGoogle Scholar
  71. Schaffranek RW, Baltzer RA, Goldberg DE (1981) A model for simulation of flow in singular and interconnected channels. Techniques of water-resources investigations of the US geological survey. Book 7:110pGoogle Scholar
  72. Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2011) A methodology for dealing with regional change in integrated water resources management. Environ Earth Sci. doi: 10.1007/s12665-011-1311-6 (this issue)
  73. Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk T (2011) The comparison and suitability of assessment methods to identify the hydro-morphological status of a transboundary river in the Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1218-2 (this issue)
  74. Schneider CL, Attinger S, Delfs JO, Hildebrandt A (2010) Implementing small scale processes at the soil–plant interface—the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 14:279–289CrossRefGoogle Scholar
  75. Schütze N, Kloss S, Lennartz F, Bakri A, Schmitz GH (2011) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci. doi: 10.1007/s12665-011-1135-4 (this issue)
  76. Shao H, Centler F, De Biase C, Thullner M, Kolditz O (2009) Comments on two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state by O.A. Cirpka, A.J. Valocchi. Adv Water Resour 32(2):293–297CrossRefGoogle Scholar
  77. Sigel K, Altantuul K, Basandorj D (2011) Household needs and demand for improved water supply and sanitation in peri-urban areas: the case of Darkhan, Mongolia. Environ Earth Sci. doi: 10.1007/s12665-011-1221-7 (this issue)
  78. Singh V (1996) Kinematic wave modeling of overland flow on a plane: numerical solutions. In: Kinematic wave modeling in water resources: surface-water hydrology, chap 14. Wiley, New YorkGoogle Scholar
  79. Singh V, Bhallamudi SM (1997) Hydrodynamic modeling of basin irrigation. J Irrig Drain Eng ASCE 123(6):407–414CrossRefGoogle Scholar
  80. Smith RE, Goodrich DC, Quinton JN (1995) Dynamic, distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models. J Soil Water Conserv 50(5):517–520Google Scholar
  81. Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger KH, Schwärzel K (2011) Estimation of spatially distributed soil information. Dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1197-3 (this issue)
  82. Therrien R, McLaren RG, Sudicky EA, Panday SM (2005) HydroGeoSphere: a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Groundwater Simulation Group, University of Waterloo, Waterloo, ON, Canada, p 322Google Scholar
  83. Thullner M, Regnier P, Van Cappellen P (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiol J 24:139–155CrossRefGoogle Scholar
  84. Van Cappellen P, Gaillard JF (1996) Biogeochemical dynamics in aquatic sediments. Rev Mineral 34:335–376Google Scholar
  85. van Genuchten MTh, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci Soc Am J 40(4):473–480CrossRefGoogle Scholar
  86. Vasyukova E, Uhl W, Braga, F, Neder K (2011) Challenges of drinking water production from surface water sources in Brasília DF, Brazil. Environ Earth Sci. doi: 10.1007/s12665-011-1308-1 (this issue)
  87. Vetter S, Schaffrath D, Bernhofer C (2011) Spatial Simulation of evapotranspiration of semi-arid Inner Mongolian grassland based on MODIS and eddy covariance data. Environ Earth Sci. doi: 10.1007/s12665-011-1187-5 (this issue)
  88. Vrugt JA, van Wijk MT, Hopmans JW, Simunek J (2001) One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 37(10):2457–2470CrossRefGoogle Scholar
  89. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641CrossRefGoogle Scholar
  90. Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS, a kinematic runoff and erosion model, documentation and user manual. USDA-Agricultural Research Service ARS-77Google Scholar
  91. Zhang W, Cundy TW (1989) Modeling of two-dimensional overland flow. Water Resour Res 25(9):2019–2035CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Kalbacher
    • 1
  • Jens-Olaf Delfs
    • 1
  • Haibing Shao
    • 1
  • Wenqing Wang
    • 1
  • Marc Walther
    • 2
  • Luis Samaniego
    • 1
  • Christoph Schneider
    • 1
  • Rohini Kumar
    • 1
  • Andreas Musolff
    • 1
  • Florian Centler
    • 1
  • Feng Sun
    • 1
    • 2
  • Anke Hildebrandt
    • 1
  • Rudolf Liedl
    • 2
  • Dietrich Borchardt
    • 1
    • 2
  • Peter Krebs
    • 2
  • Olaf Kolditz
    • 1
    • 2
  1. 1.Department of Environmental Informatics, Helmholtz Centre for Environmental Research, UFZLeipzigGermany
  2. 2.Technical University DresdenDresdenGermany

Personalised recommendations