Environmental Earth Sciences

, Volume 66, Issue 2, pp 615–624 | Cite as

An approach for valid covariance estimation via the Fourier series

  • Pilar García-Soidán
  • Raquel Menezes
  • Óscar Rubiños-López
Original Article


The use of kriging for construction of prediction or risk maps requires estimating the dependence structure of the random process, which can be addressed through the approximation of the covariance function. The nonparametric estimators used for the latter aim are not necessarily valid to solve the kriging system, since the positive-definiteness condition of the covariance estimator typically fails. The usage of a parametric covariance instead may be attractive at first because of its simplicity, although it may be affected by misspecification. An alternative is suggested in this paper to obtain a valid covariance from a nonparametric estimator through the Fourier series tool, which involves two issues: estimation of the Fourier coefficients and selection of the truncation point to determine the number of terms in the Fourier expansion. Numerical studies for simulated data have been conducted to illustrate the performance of this approach. In addition, an application to a real environmental data set is included, related to the presence of nitrate in groundwater in Beja District (Portugal), so that pollution maps of the region are generated by solving the kriging equations with the use of the Fourier series estimates of the covariance.


Covariance function Fourier series Kriging Truncation point 



The authors thank the helpful suggestions from the reviewers, which have been reflected in the current paper. This work has been supported in part by grant INCITE-08-PXIB-322219-PR from Consellería de Innovación e Industria (Xunta de Galicia, Spain). R. Menezes acknowledges financial support from the projects PTDC/MAT/104879/2008 and PTDC/MAT/112338/2009 (FEDER support included) of the Portuguese Ministry of Science, Technology and Higher Education. Ó. Rubiños-López’s research has also been supported by FEDER through Xunta de Galicia Researching programs (Grupos de referencia competitiva). P. García-Soidán and Ó. Rubiños-López acknowledge financial support from the project CONSOLIDER-INGENIO CSD2008-00068.


  1. Chen X (2005) Statistical and geostatistical features of streambed hydraulic conductivities in the Platte River, Nebraska. Environ Geol 48:693–701. doi: 10.1007/s00254-005-0007-1 CrossRefGoogle Scholar
  2. Christakos G (1984) On the problem of permissible covariance and variogram models. Water Resour Res 20:251–265. doi: 10.1029/WR020i002p00251 CrossRefGoogle Scholar
  3. Cressie N (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  4. Cressie N, Hawkins D (1980) Robust estimation of the variogram. Math Geol 12:115–125. doi: 10.1007/BF01035243 CrossRefGoogle Scholar
  5. Diggle P, Hall P (1986) The selection of terms in an orthogonal series density estimator. J Am Stat Assoc 81:230–233CrossRefGoogle Scholar
  6. Efromovich S (1999) Nonparametric curve estimation: methods, theory and applications. Springer, New YorkGoogle Scholar
  7. Eubank RL (1988) Spline smoothing and nonparametric regression. Marcel and Dekker, New YorkGoogle Scholar
  8. García-Soidán P (2007) Asymptotic normality of the Nadaraya-Watson semivariogram estimators. TEST 16:479–503. doi: 10.1080/10485250902878655 CrossRefGoogle Scholar
  9. Genton MG (1998) Highly robust variogram estimation. Math Geol 30:213–221. doi: 10.1023/A:1021728614555 CrossRefGoogle Scholar
  10. Hall P, Patil P (1994) Properties of nonparametric estimators of autocovariance for stationary random fields. Probab Theory Relat Fields 99:399–424. doi: 10.1007/BF01199899 CrossRefGoogle Scholar
  11. Hall P, Fisher NI, Hoffman B (1994) On the nonparametric estimation of covariance functions. Ann Stat 22:2115–2134. doi: 10.1214/aos/1176325774 CrossRefGoogle Scholar
  12. Hart JD (1985) On the choice of a truncation point in Fourier series density estimation. J Stat Comput Simul 21:95–116. doi: 10.1080/00949658508810808 CrossRefGoogle Scholar
  13. Huang B, Hu T (2009) BLP approach for estimation of variogram parameters. Environ Earth Sci 59:421–428. doi: 10.1007/s12665-009-0040-6 CrossRefGoogle Scholar
  14. LaMotte AE, Green EA (2007) Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA. Environ Geol 52:1413–1421. doi: 10.1007/s00254-006-0583-8 CrossRefGoogle Scholar
  15. Lark RM (2000) A comparison of some robust estimators of the variogram for use in soil survey. Eur J Soil Sci 51:137–157. doi: 10.1046/j.1365-2389.2000.00280.x CrossRefGoogle Scholar
  16. Lin YP, Chu HJ, Huang YL, Cheng BY, Chang TK (2011) Modeling spatial uncertainty of heavy metal content in soil by conditional Latin hypercube sampling and geostatistical simulation. Environ Earth Sci 62:299–311. doi: 10.1007/s12665-010-0523-5 Google Scholar
  17. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266. doi: 10.2113/gsecongeo.58.8.1246 CrossRefGoogle Scholar
  18. Menezes R, García-Soidán P, Febrero M (2005) A comparison of approaches for valid variogram achievement. Comput Stat 20(4):623–642. doi: 10.1007/BF02741319 CrossRefGoogle Scholar
  19. Menezes R, García-Soidán P, Febrero M (2008) A kernel variogram estimator for clustered data. Scand J Stat 35:18–37. doi: 10.1111/j.1467-9469.2007.00566.x CrossRefGoogle Scholar
  20. Paralta E, Ribeiro L (2003) Monitorização e modelação estocástica da contaminação por nitratos no Aquífero Gabro-diorítico na Região de Beja. Resultados, conclusões e recomendações. Seminário sobre Águas Subterráneas, APRH/LNEC, Lisboa. http://repositorio.lneg.pt/bitstream/10400.9/478/1/33618.pdf Accessed 2 December 2009
  21. Rakhmatullaev S, Marache A, Huneau F, LeCoustumer P, Bakiev M (2011) Geostatistical approach for the assessment of the water reservoir capacity in arid regions: a case study of the Akdarya reservoir, Uzbekistan. Environ Earth Sci 63:447–460. doi: 1007/s12665-010-0711-3 CrossRefGoogle Scholar
  22. Romshoo S (2003) Geostatistical analysis of soil moisture measurements and remotely sensed data at different spatial scales. Environ Geol 45:339–349. doi: 10.1007/s00254-003-0891-1 CrossRefGoogle Scholar
  23. Satapathy DR, Salve PR, Katpatal YB (2009) Spatial distribution of metals in ground/surface waters in the Chandrapur district (Central India) and their plausible sources. Environ Geol 56:1323–1352. doi: 10.1007/s00254-008-1230-3 CrossRefGoogle Scholar
  24. Tarter ME, Lock MD (1993) Model-free curve estimation. Chapman and Hall, Los AngelesGoogle Scholar
  25. Zhao Y, Xu X, Huang B, Sun W, Shao X, Shi X, Ruan X (2007) Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environ Geol 52:1423–1433. doi: 10.1007/s00254-007-0667-0 CrossRefGoogle Scholar
  26. Zygmund A (2002) Trigonometric series. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pilar García-Soidán
    • 1
  • Raquel Menezes
    • 2
  • Óscar Rubiños-López
    • 3
  1. 1.Department of Statistics and Operations ResearchUniversity of VigoPontevedraSpain
  2. 2.Department of Mathematics and ApplicationsUniversity of MinhoGuimarãesPortugal
  3. 3.Department of Signal Theory and CommunicationsUniversity of VigoVigoSpain

Personalised recommendations