Environmental Earth Sciences

, Volume 65, Issue 5, pp 1523–1533 | Cite as

Soil column experiments to quantify vadose zone water fluxes in arid settings

  • H. PfletschingerEmail author
  • I. Engelhardt
  • M. Piepenbrink
  • F. Königer
  • R. Schuhmann
  • A. Kallioras
  • C. Schüth
Special Issue


For the determination of groundwater recharge processes in arid environments, vadose zone water fluxes and water storage should be considered. To better understand and quantify vadose zone processes influencing groundwater recharge, a soil column experimental setup has been developed that mimics arid atmospheric conditions and measures water and temperature fluxes in high temporal and spatial resolution. The focus of the experiment was on the determination of water infiltration, redistribution, evaporation and percolation under non-isothermal conditions. TDR rod sensors and a specific TDR “Taupe” cable sensor were used for water content measurements and allowed the infiltration fronts to be traced over the whole column length. Applying single irrigations of different amount and intensity showed the applicability of the experimental setup for the measurement of water movement in the unsaturated soil column.


Vadose zone Column experiments Groundwater recharge TDR Unsaturated water flow 

List of symbols


Measured relative dielectric permittivity (–)


TDR probe length (m)


TDR apparent probe length (signal length along the probe) (m)


Total water fluxes (ml)


Liquid water fluxes (ml)


Vapor fluxes (ml)


Isothermal water fluxes (ml)


Thermal water fluxes (ml)


Reflection coefficient (–)


Temperature (°C)


Time domain reflectometry


Volumetric water content (cm³/cm³)



Financial support for this research has been kindly provided by the Federal Ministry of Education and Research (BMBF) through the “International Water Research Alliance Saxony” (IWAS) and through the “International Postgraduate Studies in Water Technologies” (IPSWaT) Program of its International Bureau. Special thanks for conceptual help are due to C. Hofstee from The Netherlands Organization (TNO) (Utrecht, The Netherlands) and M. Oostrom and T. Wietsma from the Environmental Molecular Sciences Laboratory (EMSL) (Richland, WA, USA).


  1. Brandelik A, Huebner C, Schuhmann R (1998) Moisture sensor for large area layers. German patent no. 4432687, European patent no. 0804724, US patent no. 5942904, 16 June 1998Google Scholar
  2. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Papers No. 3. Colorado State Univ, Fort CollinsGoogle Scholar
  3. Cary JW (1966) Soil moisture transport due to thermal gradients: practical aspects. Soil Sci Soc Am Proc 30(4):428–433CrossRefGoogle Scholar
  4. Dahan O, McDonald EV, Young MH (2003) Flexible time domain reflectometry probe for deep vadose zone monitoring. Vadose Zone J 2:270–275. doi: 10.2136/vzj2003.2700 Google Scholar
  5. Dong W, Yu Z, Weber D (2003) Simulations on soil water variation in arid regions. J Hydrol 275:162–181. doi: 10.1016/S0022-1694(03)00041-6 CrossRefGoogle Scholar
  6. Engelhardt I, Finsterle S, Hofstee C (2003) Experimental and numerical investigation of flow phenomenon in nonisothermal, variably bentonite-crushed rock mixtures. Vadose Zone J 2:239–246Google Scholar
  7. Evett SR, Tolk JA, Howell TA (2005) Time domain reflectometry laboratory calibration in travel time, bulk electrical conductivity, and effective frequency. Vadose Zone J 4(4):1020–1029. doi: 10.2136/vzj2005.0046 CrossRefGoogle Scholar
  8. Grundmann J, Schütze N, Schmitz G-H, Al Shaqsi S (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi: 10.1007/s12665-011-1253-z (this issue)
  9. Heimovaara TJ, Freijer JI, Bouten W (1993) The application of TDR in laboratory column experiments. Soil Technol 6:261–272. doi: 10.1016/0933-3630(93)90015-7 CrossRefGoogle Scholar
  10. Hendrickx JMH, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: NRC Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, pp 149–187Google Scholar
  11. Hillel D (2004) Introduction to environmental soil physics. Elsevier Science, CaliforniaGoogle Scholar
  12. Hopmans JW, Schoups GH (2005) Soil water flow at different spatial scales. In: Anderson M (ed) Encyclopedia of hydrological sciences. vol. 2 Part 6. Wiley, New YorkGoogle Scholar
  13. Huebner C, Schlaeger S, Becker R, Scheuermann A, Brandelik A, Schaedel W, Schuhmann R (2005) Advanced measurement methods in time domain reflectometry for soil moisture determination. In: Kupfer K (ed) Electromagnetic Aquametry-Electromagnetic wave interaction with water and moist substances. Springer, Berlin, pp 317–347Google Scholar
  14. Huisman JA, Lambot S, Vereecken H (2006) Determining soil water content variation along the TDR probe with inverse modeling: Theory, practice, and challenges. In: Proc. TDR 2006, Purdue University, West Lafayette, USA, Sept. 2006, Paper ID 28Google Scholar
  15. Jones SB, Mace RW, Or D (2005) A time domain reflectometry coaxial cell for manipulation and monitoring of water content and electrical conductivity in variably saturated porous media. Vadose Zone J 4:977–982. doi: 10.2136/vzj2005.0048 CrossRefGoogle Scholar
  16. Jury WA, Horton R (2004) Soil physics, 6th edn. Wiley, New York, USAGoogle Scholar
  17. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS––Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions, Environ Earth Sci. doi: 10.1007/s12665-011-1330-3 (this issue)
  18. Koeniger F, Nueesch R, Rabl-Lasar W, Roth J, Ruppert P, Schuhmann R (2005) Alternative surface covering of landfill using the TAUPE sealing monitoring system. In: Proceedings of the 6th Conference on electromagnetic wave interaction with water and moist substances, ISEMA. Weimar. Germany. 29.05–01.06.2005. 422–428Google Scholar
  19. Mattson ED, Magnuson SO, Ansley SL (2004) Interpreting INEEL vadose zone water movement on the basis of large-scale field tests and long-term vadose zone monitoring results. Vadose Zone J 3:35–46. doi: 10.2136/vzj2004.3500 Google Scholar
  20. Mooney S, Morris C (2004) Quantification of preferential flow in undisturbed soil columns using dye tracers and image analysis. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, University of Sydney, Australia, 5–9 December 2004Google Scholar
  21. Mori Y, Hopmans JW, Mortensen AP, Kluitenberg GJ (2005) Estimation of vadose zone water flux from multi-functional heat pulse probe measurements. Soil Sci Soc Am J 69:599–606. doi: 10.2136/sssaj2004.0174 CrossRefGoogle Scholar
  22. Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric 31:213–237. doi: 10.1016/S0168-1699(00)00184-8 CrossRefGoogle Scholar
  23. Oostrom M, Dane JH, Wietsma TW (2005) A review of multidimensional, multifluid, intermediate-scale experiments: Flow behavior, saturation imaging, and tracer detection and quantification. Vadose Zone J 6:610–637. doi: 10.2136/vzj2006.0178 CrossRefGoogle Scholar
  24. Reynolds WD, Elrick DE, Youngs EG, Amoozegar A, Booltink HWG, Bouma J (2002) Saturated and field-saturated water flow parameters. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4 - Physical methods. SSSA Book Series, vol 5. Soil Science Society of America, Madison, WI, pp 797–878Google Scholar
  25. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using Time Domain Reflectometry. Vadose Zone J 2:444–475Google Scholar
  26. Saito H, Simunek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5:784–800. doi: 10.2136/vzj2006.0007 CrossRefGoogle Scholar
  27. Sakai M, Toride N, Simunek J (2009) Water and vapor movement with condensation and evaporation in a sandy column. Soil Sci Soc Am J 73:707–717. doi: 10.2136/sssaj2008.0094 CrossRefGoogle Scholar
  28. Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35:461–490. doi: 10.1029/97RG01172 CrossRefGoogle Scholar
  29. Schlaeger S, Becker R, Schadel W, Scheuermann A, Worschung H (2006) Improvements of spatial-TDR for hydrological and geotechnical applications. In: Proc. TDR 2006, Purdue University, West Lafayette, USA, Paper ID 31, 19 p, Sept 2006Google Scholar
  30. Schütze N, Kloss S, Lennartz F, Bakri A, Schmitz GH (2011) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty, Environ Earth Sci. doi: 10.1007/s12665-011-1135-4 (this issue)
  31. Sililo OTN, Tellam JH (2000) Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems. Ground Water 38:865–871CrossRefGoogle Scholar
  32. Stacheder M, Koeniger F, Schuhmann R (2009) New dielectric sensors and sensing techniques for soil and snow moisture measurements. Sensors 9:2951–2967. doi: 10.3390/s90402951 CrossRefGoogle Scholar
  33. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582CrossRefGoogle Scholar
  34. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  35. Walvoord MA, Plummer MA, Phillips FM (2002) Deep arid system hydrodynamics. 1. Equilibrium states and response times in thick desert vadose zones. Water Resour Res 38(12):1308. doi: 10.1029/2001WR000824 CrossRefGoogle Scholar
  36. Yang H, Rahardja H, Wibawa B, Leong E-C (2004) A soil column apparatus for laboratory infiltration study. Geotech Test J 27(4):347–355. doi: 10.1520/GTJ11549 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • H. Pfletschinger
    • 1
    Email author
  • I. Engelhardt
    • 1
  • M. Piepenbrink
    • 1
  • F. Königer
    • 2
  • R. Schuhmann
    • 2
  • A. Kallioras
    • 1
  • C. Schüth
    • 1
  1. 1.Technische Universität DarmstadtInstitute of Applied GeosciencesDarmstadtGermany
  2. 2.KIT, Institute of Functional InterfacesEggenstein-LeopoldshafenGermany

Personalised recommendations