Skip to main content
Log in

Removal of Pb2+ from aqueous solutions using two Brazilian rocks containing zeolites

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites—amygdaloidal dacite (ZD) and sandstone (ZS)—was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20°C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed IAM, Young SD, Crout NMJ (2006) Time-dependent sorption of Cd2+ on CaX zeolite: experimental observations and model predictions. Geochim Cosmochim Acta 70:4850–4861. doi:10.1016/j.gca.2006.07.011

    Article  Google Scholar 

  • Álvarez-Ayuso E, García-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862. doi:10.1016/j.watres.2003.08.009

    Article  Google Scholar 

  • An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35(15):3551–3556

    Article  Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In: Bish DL, Ming DW (ed) Reviews in mineralogy and geochemistry, vol 45. Mineralogical Society of America, Washington, DC, pp 1–67

  • Bailey SE, Olin TJ, Bricka M, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Google Scholar 

  • Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London

    Google Scholar 

  • Bektas N, Kara S (2004) Removal of lead from aqueous solutions by natural clinoptilolite: equilibrium and kinetic studies. Separ Purif Tech 39:189–200. doi:10.1016/j.seppur.2003.12.001

    Article  Google Scholar 

  • Bosso ST, Enzweiler J (2002) Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Res 36:4795–4800

    Article  Google Scholar 

  • Breck DW (1984) Zeolite Molecular Sieve. John Wiley and Son, New York

    Google Scholar 

  • Castaldi P, Santona L, Enzo S, Melis P (2008) Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J Hazard Mater 156(1–3):428–434. doi:10.1016/j.jhazmat.2007.12.040

    Article  Google Scholar 

  • Chabani M, Amrane A, Bensmaili A (2009) Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400. J Hazard Mater 165(1–3):27–33. doi:10.1016/j.jhazmat.2008.08.091

    Article  Google Scholar 

  • Chen Z, Ma W, Han M (2008) Biosorption of nickel and cooper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J Hazard Mater 155:327–333. doi:10.1016/j.jhazmat.2007.11.064

    Article  Google Scholar 

  • Colella C (1996) Ion-exchange equilibria in zeolite minerals. Miner Deposita 31:554–562

    Article  Google Scholar 

  • Çoruh S (2008) The removal of zinc ions by natural and conditioned clinoptilolites. Desalination 225:41–57

    Article  Google Scholar 

  • Curkovic L, Cerjan-Stefanovic S, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31:1379–1382

    Article  Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interf Sci 280:309–314. doi:10.1016/j.jcis.2004.08.028

    Article  Google Scholar 

  • Habuda-Stanic M, Kuleš M, Kalajdžca B, Romic Z (2007) Quality of groundwater in eastern Croatia. The problem of arsenic pollution. Desalination 210:157–162. doi:10.1016/j.desal.2006.05.040

    Article  Google Scholar 

  • Han R, Zou W, Li H, Li Y, Shi J (2006) Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J Hazard Mater B137:934–942. doi:10.1016/j.jhazmat.2006.03.016

    Article  Google Scholar 

  • Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

    Article  Google Scholar 

  • Janasi VA, Negri FA, Montanheiro TJ, Freitas VA, Rocha BC, Reis PM (2007) Geochemistry of the eocretacic basalt magmatism in the Piraju-Ourinhos region, SE Brazil, and implications to the stratigraphy of the Serra Geral Formation. Rev Bras Geoc 37:148–162

    Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Tech 20:895–904. doi:10.1021/es00151a008

    Article  Google Scholar 

  • Kocaoba S, Orhan Y, Akyüz T (2007) Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination 214:1–10. doi:10.1016/j.desal.2006.09.023

    Article  Google Scholar 

  • Leppert D (1990) Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Min Eng 42:604–608

    Google Scholar 

  • Monte MBM, Resende NGAM (2004) Zeolitas Naturais. In: COPM (coord.) Rochas & Minerais industriais: usos e especificações. CETEM/MCT, Rio de Janeiro, 33, pp 699–720

  • Ouki SK, Kavannagh M (1997) Performance of natural zeolites for the treatment of mixed metal-contaminator effluents. Waste Manag Res 15:383–394

    Google Scholar 

  • Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. In: Bish DL, Ming DW (ed) Reviews in mineralogy and geochemistry, vol 45. Mineralogical Society of America, Washington, DC, pp 453–518

  • Pansini M, Colella C (1990) Dynamic data on lead uptake from water by chabazite. Desalination 78:287–295

    Google Scholar 

  • Pansini M, Colella C, Caputo D, De Gennaro M, Langella A (1996) Evaluation of phillipsite as cation exchanger in lead removal from water. Micropor Mater 5:357–364

    Google Scholar 

  • Pitcher SK, Slade RCT, Ward NI (2004) Heavy metal removal from motorway stormwater using zeolites. Sci Total Environ 334–335:161–166. doi:10.1016/j.scitotenv.2004.04.035

    Google Scholar 

  • Rezende NGAM (2002) A zona zeolítica da Formação Corda—Bacia do Parnaíba. Dissertation, Federal University of Pará, Brasil

  • Shinzato MC, Montanheiro TJ, Negri FA, Janasi VA, Andrade S, Yamamoto JK (2008) Caracterização tecnológica das zeólitas naturais associadas às rochas eruptivas da Formação Serra Geral, na região de Piraju-Ourinhos (SP). Rev Bras Geoc 38(3):525–532

    Google Scholar 

  • Shinzato MC, Montanheiro TJ, Janasi VA, Andrade S, Yamamoto JK (2009) Remoção de Pb2+ e Cr3+ em solução por zeólitas naturais associadas a rochas eruptivas da Formação Serra Geral, Bacia Sedimentar do Paraná (SP). Quim Nova 32(8):1989–1994

    Article  Google Scholar 

  • Simoncic P, Armbruster T (2004) Peculiarity and defect structure of the natural and synthetic zeolite mordenite: a single-crystal study. Am Miner 89:421–431

    Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namiesnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. J Colloid Interf Sci 304:21–28. doi:10.1016/j.jcis.2006.07.068

    Article  Google Scholar 

  • Svilovic S, Rusic D, Zanetic R (2008) Thermodynamics and adsorption isotherms of copper ions removal from solutions using synthetic zeolite X. Chem and Biochem Eng Q 22(3):299–305

    Google Scholar 

  • Turan M, Mart U, Yüksel B, Çelik MS (2005) Lead removal in fixed-bed columns by zeolite and sepiolite. Chemosphere 60:1487–1492. doi:10.1016/j.chemosphere.2005.02.036

    Article  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater B133:304–308. doi:10.1016/j.jhazmat.2005.10.016

    Article  Google Scholar 

  • Yuan G, Seyama H, Soma M, Theng BKG, Tanaka A (1999) Adsorption of some heavy metals by natural zeolites: XPS and batch studies. J. Environ Sci Health A Environ Sci Eng 34(3):625–648

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (process 03/06259-4). N.G.A.M. Rezende provided the sandstone from the Corda Formation (Parnaíba Basin). We wish to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Shinzato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinzato, M.C., Montanheiro, T.J., Janasi, V.A. et al. Removal of Pb2+ from aqueous solutions using two Brazilian rocks containing zeolites. Environ Earth Sci 66, 363–370 (2012). https://doi.org/10.1007/s12665-011-1245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1245-z

Keywords

Navigation