Advertisement

Environmental Earth Sciences

, Volume 66, Issue 1, pp 157–168 | Cite as

Impact of acid sulfate soils on the geochemistry of rivers in south-western Finland

  • Maria E. Nyberg
  • Peter Österholm
  • Miriam I. Nystrand
Original Article

Abstract

Large areas of acid sulfate (AS) soils are located along the coastal plains of Finland, and previous studies have shown that after reclamation they release extreme quantities of metals to watercourses in mid-western and northern Finland. In this study on streams of south-western Finland, where little information about AS soils is available, these soils were found to exhibit the same pattern of elevated metal- and sulfate concentrations as in the notorious AS soil landscapes of mid-western Finland. Meteorologically/hydrologically driven temporal variations of these elements were great in the most affected streams. There were also significant positive implications regarding future environmental work; AS soils in the highlighted region were found to cause sudden temporal influxes of acidic water only in the most affected streams, indicating that the overburden and soils of the area discharge well buffered water. Moreover, it was indicated that the high (less toxic) metal concentrations are largely caused by erosion of suspended phyllosilicates (<0.45 μm) from farmland rather than by AS soils.

Keywords

Acid sulfate soils South-western Finland Hydrogeochemistry River Metals Acidity 

Notes

Acknowledgments

The authors are grateful for financial support from Renlunds Stiftelse, TE Centre for Southwestern Finland and Lounaissuomen ja Laitilan kalastusalue, Magnus Ehrnrooths Stiftelse, the Finnish Graduate School of Geology, Stiftelsen för Åbo Akademi Forskningsinstitut, Svenska Kulturfonden and Maa- ja Vesitekniikan Tuki ry. The authors also acknowledge Leif Österholm and Gunnar Jacks for their help with the DOC and Tot-N analyses, respectively, Robert Sundström for his help with planning and sampling and Hanneke Helminen who helped with sampling and lab work, and Kari Ranta-Aho (TE Centre) and Arto Katajamäki (Lounaissuomen ja Laitilan kalastusalue) who initially encouraged us to conduct this study.

References

  1. Andriesse W, van Mensvoort MEF (2005) Acid sulfate soils: distribution and extent. In: Lal R (ed) Encyclopedia of soil science, 2nd edn. Marcel Dekker Inc, New York, pp 14–19Google Scholar
  2. Åström M (2001) The effect of acid soil leaching on trace element abundance in a medium-sized stream, W. Finland. Appl Geochem 16:387–396. doi: 10.1016/S0883-2927(00)00034-2 CrossRefGoogle Scholar
  3. Åström M, Åström J (1997) Geochemistry of stream water in a catchment in Finland affected by sulphidic fine sediments. Appl Geochem 12:593–605. doi: 10.1016/S0883-2927(97)00016-4 CrossRefGoogle Scholar
  4. Åström M, Björklund A (1995) Impact of acid sulfate soils on stream water geochemistry in western Finland. Geochem Explor 55:163–170. doi: 10.1016/0375-6742(95)00018-6 CrossRefGoogle Scholar
  5. Boman A, Åström M, Fröjdö S (2008) Sulfur dynamics in boreal acid sulphate soils rich in metastable iron sulphide—the role of artificial drainage. Chem Geol 255:68–77. doi: 10.1016/j.chemgeo.2008.06.006 CrossRefGoogle Scholar
  6. Boman A, Fröjdö S, Backlund K, Åström M (2010) Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochim Cosmochim Acta 74:1268–1281. doi: 10.1016/j.gca.2009.11.026 CrossRefGoogle Scholar
  7. Dent DL, Pons LJ (1995) A world perspective on acid sulphate soils. Geoderma 67:263–276. doi: 10.1016/0016-7061(95)00064-U CrossRefGoogle Scholar
  8. Fältmarsch R, Åström M, Vuori KM (2008) Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review. Boreal Environ Res 13:444–456Google Scholar
  9. Gaillard J, Viers J, Dupré B (2003) Trace elements in river water. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol 5. Elsevier, Amsterdam, pp 225–272CrossRefGoogle Scholar
  10. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. U.S. Geological Survey Water-Supply Paper 2254Google Scholar
  11. Hooli J, Lakso E, Palko J (1993) Water protection in acid sulphate soils. Water Sci Technol 28:199–203Google Scholar
  12. Hudd R, Hildén M, Urho L (1986) The effects of anthropogenic acidification on the stocks and fisheries of beam and burbot in the sea area influenced by the river Kyrönjoki in the Gulf of Bothnia. Publications of the Water Research Institute, National Board of water, Finland 68:134–138Google Scholar
  13. Hudd R, Kjellman J (2002) Bad matching between hatching and acidification: a pitfall for the burbot, Lota lota, off the river Kyrönjoki, Baltic Sea. Fish Res 55:153–160. doi: 10.1016/S0165-7836(01)00303-4 CrossRefGoogle Scholar
  14. Joukainen S, Yli-Halla M (2003) Environmental impacts and acid loads from deep sulfidic layers of two well-drained acid sulfate soils in western Finland. Agric Ecosyst Environ 95:297–309. doi: 10.1016/S0167-8809(02)00094-4 CrossRefGoogle Scholar
  15. Lahermo P, Väänänen P, Tarvainen T, Salminen R (1996) Geochemical Atlas of Finland, part 3: environmental geochemistry–stream waters and sediments. Geological Survey of Finland, Espoo (in Finnish)Google Scholar
  16. Laudon H (2000) Separating natural acidity from anthropogenic acidification in the spring flood of Northern Sweden. Dissertation, Swedish University of Agricultural ScienceGoogle Scholar
  17. Nordmyr L, Åström M, Peltola P (2008) Metal pollution of estuarine sediments caused by leaching of acid sulphate soils. Estuar Coast Shelf Sci 76:141–152. doi: 10.1016/j.ecss.2007.07.002 CrossRefGoogle Scholar
  18. Österholm P, Åström M (2002) Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W Finland. Appl Geochem 17:1209–1218. doi: 10.1016/S0883-2927(01)00133-0 CrossRefGoogle Scholar
  19. Österholm P, Åström M (2004) Quantification of current and future leaching of sulfur and metals from Boreal acid sulfate soils, western Finland. Aust J Soil Res 42:547–551. doi: 10.1071/SR03088 CrossRefGoogle Scholar
  20. Österholm P, Åström M, Sundström R (2005) Assessment of aquatic pollution, remedial measures and juridical obligations of an acid sulphate soil area in western Finland. Agric Food Sci 14:44–56. doi: 10.2137/1459606054224101 CrossRefGoogle Scholar
  21. Österholm P, Åström M (2008) Meteorological impacts on the water quality in the Pajuluoma acid sulphate area, W. Finland Appl Geochem 23:1594–1606. doi: 10.1016/j.apgeochem.2008.01.011 CrossRefGoogle Scholar
  22. Paasonen-Kivekäs M, Yli-Halla M (2005) A comparison of nitrogen and carbon reserves in acid sulphate and non acid sulphate soils in western Finland. Agric Food Sci 14:57–69. doi: 10.2137/1459606054224174 CrossRefGoogle Scholar
  23. Palko J, Räsänen M, Alasaarela E (1985) Happamien sulfaattimaiden esiintyminen ja vaikutus veden laatuun Sirppujoen vesistöalueella. National board of waters report 260 (in Finnish)Google Scholar
  24. Palko J (1994) Acid sulphate soils and their agricultural and environmental problems in Finland. Dissertation, University of OuluGoogle Scholar
  25. Perttunen M, Lappalainen E, Taka M, Herola E (1984) Vehmaan, Mynämäen, Uudenkaupungin ja Yläneen kartta-alueiden maaperä. Geological Survey of Finland (in Finnish)Google Scholar
  26. Roos M, Åström M (2005a) Hydrochemistry of rivers in an acid sulphate soil hotspot area in western Finland. Agric Food Sci 14:24–33. doi: 10.2137/1459606054224075 CrossRefGoogle Scholar
  27. Roos M, Åström M (2005b) Seasonal and spatial variations in major and trace elements in a regulated Boreal river (Esse River) affected by acid sulphate soils. River Res Appl 21:351–361. doi: 10.1002/rra.807 CrossRefGoogle Scholar
  28. Rudebeck A, Persson T (1998) Nitrification in organic and mineral soil layers in coniferous forests in response to acidity. Environ Pollut 102:377–383. doi: 10.1016/S0269-7491(98)80057-2 CrossRefGoogle Scholar
  29. Saarinen T, Vuori KM, Alasaarela E (2010) Long-term trends and variation of acidity, CODMn and colour in coastal rivers of Western Finland in relation to climate and hydrology. Sci Total Environ 408:5019–5027. doi: 10.1016/j.scitotenv.2010.07.009 CrossRefGoogle Scholar
  30. Sohlenius G, Öborn I (2004) Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation. Geoderma 122:167–175. doi: 10.1016/j.geoderma.2004.01.006 CrossRefGoogle Scholar
  31. Sundström R, Åström M, Österholm P (2002) Comparison of the metal content in acid sulfate soil runoff and industrial effluents in Finland. Environ Sci Technol 36:4269–4272. doi: 10.1021/es020022g CrossRefGoogle Scholar
  32. Triipponen JP (1997) Sirppujoen valuma-alueen happamuustutkimus. Lounais, Suomen ympäristökesus (in Finnish)Google Scholar
  33. Urho L, Hildén M, Hudd R (1990) Fish reproduction and the impact of acidification in the Kyrönjoki River estuary in the Baltic Sea. Environ Biol Fishes 27:273–283. doi: 10.1007/BF00002746 CrossRefGoogle Scholar
  34. van Breemen N (1973) Soil forming processes in acid sulphate soils. In: Drost H (ed) Acid sulphate soil, vol 1. ILRI Publ 18, pp 66–130Google Scholar
  35. Weppling K (1997) On the assessment of feasible liming strategies for acid sulphate waters in Finland. Dissertation, University of TartuGoogle Scholar
  36. Yli-Halla M (1997) Classification of acid sulphate soils of Finland according to Soil Taxonomy and the FAO/UNESCO legend. Agric Food Sci 6:247–258Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maria E. Nyberg
    • 1
  • Peter Österholm
    • 1
  • Miriam I. Nystrand
    • 1
  1. 1.Department of Geology and MineralogyÅbo Akademi UniversityTurkuFinland

Personalised recommendations