Skip to main content

Advertisement

Log in

Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The assessment of anthropogenic impact in the urban environment can be evaluated according to heavy metal contents of soils such as Pb, Cu, Zn, Cd and Fe. These elements have more affinity to establish metallic bond with ferrous material leading to enhancement of soil magnetic susceptibility. The objective of this study was to undertake joint magnetic and geochemical investigations of road-side urban soil materials to address the environmental pollution of Beni Mellal city that has been subjected to environmental stress, due to population overpressure and related urbanization. Twenty three soils magnetic susceptibility profiles were made along 5 km peripheral national road (N8) in Beni Mellal. The magnetic survey reported here for the first time on this City’s topsoils tries to establish the link between magnetic properties and the content of heavy metals. High magnetic susceptibility values and high contents of heavy metals were found near the paved edge of the road and within the place reserved as large engine park. Magnetic extracts of highly polluted areas and unpolluted soil (olive plantation) were analyzed by SEM coupled with RDX in order to discriminate anthropogenic magnetic spherules and pedo-lithogenic magnetite-like minerals. Magnetic mineralogy determined by Mössbauer spectroscopy suggests the presence of hematite, magnetite and goethite in highly polluted areas. The iron oxides and especially goethite are efficient in incorporating and/or adsorbing foreign ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell, Oxford, pp 285–344

    Google Scholar 

  • Andersson M, Ottesen RT, Langedal M (2010) Geochemistry of urban surface soils—monitoring in Trondheim, Norway. Geoderma 156:112–118

    Article  Google Scholar 

  • Barrero CA, Vandenberghe RE, De Grave E, da Costa MG (1996) A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models. In: Ortalli I (ed) Proceedings of the international conference on the applications of the Mössbauer eVect (ICAME-95), Italian Physical Society, Italy, pp 717–720

  • Berquó TS, Imbernon RAL, Blot A, Franco DR, Toledo MCM, Partiti CSM (2007) Low temperature magnetism and Mössbauer spectroscopy study from natural goethite. Phys Chem Mineral 34:287–294

    Article  Google Scholar 

  • Bijaksana S, Huliselan EK (2010) Magnetic properties and heavy metal content of sanitary leachate sludge in two landfill sites near Bandung, Indonesia. Environ Earth Sci 60:409–419

    Article  Google Scholar 

  • Boyko T, Scholger R, Stanjek H, Team M (2004) Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J Appl Geophys 55:249–259

    Article  Google Scholar 

  • Brand RA (1987) NORMOS program, Internat Rep Angewandte Phys. Universität Duisberg, Duisberg

    Google Scholar 

  • Chan LS, Ng SL, Davis AM, Yim WWS, Yeung CH (2001) Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny’s Bay, Hong Kong. Mar Pollut Bull 42:569–583

    Article  Google Scholar 

  • Chaparro MAE, Sinito AM, Ramasamy V, Marinelli C, Chaparro MAE, Mullainathan S, Murugesan S (2008) Magnetic measurements and pollutants of sediments from Cauvery and Palaru River, India. Environ Geol 56:425–437

    Article  Google Scholar 

  • Chaparro MAE, Gogorza CSG, Chaparro MAE, Irurzun MA, Sinito AM (2006) Review of magnetism and heavy metal pollution studies of various environments in Argentina. Earth Planets Space 58(10):1411–1422

    Google Scholar 

  • Dearing JA (1999) Environmental magnetic susceptibility, using the Bartington MS2 System, 2nd edn. Chi Publishing, England

    Google Scholar 

  • Duan XM, Hu SY, Yan HT, Blaha U, Roesler W, Appel E, Sun WH (2009) Relationship between magnetic parameters and heavy element contents of arable soil around a steel company, Nanjing. Sc. China Earth Sc. doi: 10.1007/s11430-009-0165-1

  • Durza O (1999) Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant. Phys Chem Earth 24:541–543

    Article  Google Scholar 

  • El Baghdadi M, Barakat A, Agouriane E, Sajieddine M (2010) Soil magnetic susceptibility as a proxy to detect urban pollution in Beni Mellal City (Morocco). In: 10ème Conférence Internationale en Physique de la Matière Condensée et Physique Statistique, Beni Mellal, 25–26 Mars 2010, p 92

  • Fassbinder JWE, Stanjek H (1994) Magnetic properties of biogenic soil greigite (Fe3S4). Geophys Res Lett 21:2349–2352

    Article  Google Scholar 

  • Gautam P, Blaha U, Appel E (2005a) Integration of magnetism and heavy metal chemistry of soils to quantify the environmental pollution in Kathmandu, Nepal. Island Arc 14:424–435

    Article  Google Scholar 

  • Gautam P, Blaha U, Appel E (2005b) Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-relatedheavy metal pollution in Kathmandu city, Nepal. Atmos Environ 39:2201–2211

    Article  Google Scholar 

  • Gautam P, Blaha U, Appel E, Neupane G (2004) Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal. Phys Chem Earth 29:973–984

    Article  Google Scholar 

  • Gunther A, Brokmeier HG, Petrovsky E, Siemes H, Helming K, Quade H (2002) Mineral preferred orientation and magnetic properties as indicators of varying strain conditions in naturally deformed iron ore. Appl Physics A 74:S1080–S1082. doi:10.1007/s003390101194

    Article  Google Scholar 

  • Hanesch M, Scholger R (2005) The influence of soil type on the magnetic susceptibility measured throughout profiles. Geophys J Int 161:50–56

    Article  Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Env Geol 42:857–870

    Article  Google Scholar 

  • Hay KL, Dearing JA, Baban SMJ, Loveland P (1997) A preliminary attempt to identify atmospherically derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys Chem Earth 22:207–210

    Article  Google Scholar 

  • Heller F, Strzyszca Z, Magiera T (1998) Magnetic record of industrial pollution in forest soils of Upper Silesia. Poland J Geophys Res 103:17767–17774

    Article  Google Scholar 

  • Hoffmann V, Knab M, Appel E (1999) Magnetic susceptibility mapping of roadside pollution. J Geochem Explor 66:313–326

    Article  Google Scholar 

  • Hounslow MW, Maher BA (1996) Quantitative extraction and analysis of carriers of magnetization. Geophys J Int 124:57–74

    Google Scholar 

  • Hounslow MW, Maher BA (1999) Laboratory procedures for quantitative extraction and analysis of magnetic minerals from sediments. In: Walden J, Oldfield F, Smith JP (eds) Environmental magnetism: a practical guide. Quarternary Research Association Technical Guide No. 6, London, pp 139–189

    Google Scholar 

  • Hu XF, Su Y, Ye R, Li XQ, Zhang GL (2007) Magnetic properties of the urban soils in Shanghai and their environmental implications. Catena 70:428–436

    Article  Google Scholar 

  • Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci Total Environ 33:129–139

    Article  Google Scholar 

  • Jordanova D, Jordanova N (1999) Magnetic characteristics of different soil types from Bulgaria. Stud Geophys Geod 43:303–318

    Article  Google Scholar 

  • Jordanova NV, Jordanova DV, Veneva L, Yorova K, Petrovsky E (2003) Magnetic response of soils and vegetation to heavy metal pollution. A case study. Environ Sci Technol 37:4417–4424

    Article  Google Scholar 

  • Kapicka A, Petrovsky E, Ustjak S, Machackova K (1999) Proxy mapping of fly ash pollution of soils around a coal-burning power plant: a case study in the Crech Republic. J Geochem Explor 66:291–297

    Article  Google Scholar 

  • Kim W, Doh SJ, Park YH, Yun ST (2007) Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos Environ 41:7627–7641

    Article  Google Scholar 

  • Knab M, Appel E, Hoffmann V (2001) Separation of the anthropogenic portion of heavy metal contents along a highway by means of magnetic susceptibility and fuzzy c-means cluster analysis. Eur J Environ Eng Geophys 6:125–140

    Google Scholar 

  • Lecoanet H, Leveque F, Ambrosi JP (2003) Combination of magnetic parameters: an efficient way to discriminate soil contamination sources (south France). Environ Pollut 122:229–234

    Article  Google Scholar 

  • Lu SG, Bai SQ (2006) Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J Appl Geophys 60:1–12

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z (2000) Ferrimagnetic minerals of anthropogenic origin in soils of some Polish National Parks. Water Air Soil Pollut 124:37–48

    Article  Google Scholar 

  • Maher B (1999) Comments on origin of the magnetic susceptibility signal in Chinese loess. Quat Sci Rev 18:865–869

    Article  Google Scholar 

  • Maher B (2007) Environmental magnetism and climate change. Contemp Phys 48:247–274

    Article  Google Scholar 

  • Maher B (2009) Rain and dust: magnetic records of climate and pollution. Elements 5:229–234

    Article  Google Scholar 

  • Maher B, Thompson R (1999) Palaeomonsoons I: the magnetic record of palaeoclimate in the terrestrial loess and palaeosol sequences. In: Maher BA, Thompson R (eds) Quaternary climates, environments and magnetism. Cambridge University Press, Cambridge, pp 81–125

  • Maher BA, Alekseev A, Alekseeva T (2003) Magnetic mineralogy of soils across the Russian steppe: climatic dependence of pedogenic magnetic formation. Palaeogeogr Palaeoclimatol Palaeoecol 201:321–341

    Article  Google Scholar 

  • Matzka J, Maher B (1999) Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos Environ 33:4565–4569

    Article  Google Scholar 

  • Morton-Bermea O, Hernandez E, Martinez-Pichardo E, Soler-Arechalde AM, Lozano Santa-Cruz R, Gonzalez-Hernandez G, Beramendi-Orosco L, Urrutia-Fucugauchi J (2009) Mexico City topsoils: Heavy metals vs. magnetic susceptibility. Geoderma 151:121–125

    Article  Google Scholar 

  • Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their utilization. Kluwer, Boston

    Book  Google Scholar 

  • Muxworthy AR, Schmidbauer E, Petersen N (2002) Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany. Geophys J Int 150:558–570

    Article  Google Scholar 

  • Pandey SK, Tripathi BD, Prajapati SK, Mishra VK, Upadhyaya AR, Rai PK, Sharma AP (2005) Magnetic properties of vehicle-derived particulates and amelioration by Ficus infectoria: a keystone species. Ambio 34(8):645–646

    Google Scholar 

  • Petrovsky E, Ellwood BB (1999) Magnetic monitoring of air-, land- and waterpollution. In: Maher BA, Thompson R (eds) Quaternary climates, environments and magnetism. Cambridge University Press, Cambridge, pp 279–322

    Chapter  Google Scholar 

  • Petrovsky E, Kapicka A, Jordanova N, Boruvka L (2001) Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. J Appl Geophys 48:127–136

    Article  Google Scholar 

  • Perkins AM (1996) Observations under electron microscopy of magnetic mineraIs extracted from speleothems. Earth Planet Sci Lett 139:281–289

    Article  Google Scholar 

  • Schneeweiss O, Zboril R, Pizurova N, Mashlan M, Petrovsky E, Tucek J (2006) Novel solid-state synthesis of a-Fe and Fe3O4 nanoparticles embedded in a MgO matrix. Nanotechnology 17:607–616

    Article  Google Scholar 

  • Schwertmann U, Wagner F, Knicker H (2005) Ferrihydrite–Humic associations: magnetic hyperfine interactions. Soil Sci Soc Am J 69:1009–1015

    Article  Google Scholar 

  • Shu J, Dearing JA, Morse AP, Yu LZ, Yuan N (2001) Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmos Environ 35:2615–2625

    Article  Google Scholar 

  • Singer MJ, Verosub KL, Fine P (1996) A conceptual model for enhancement of magnetic susceptibility of soils. Quat Int 34–36:243–248

    Article  Google Scholar 

  • Stanjek H, Fassbinder JWE, Vali H, Wagele H, Graf W (1994) Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil. Eur J Soil Sci 445:97–104

    Article  Google Scholar 

  • Strzyszcz Z, Magiera T (1998) Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys Chem Earth 23:1127–1131

    Article  Google Scholar 

  • Taylor R, Maher B, Self P (1987) Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite. Clay Minerals 22:411–422

    Article  Google Scholar 

  • Trivedi P, Axe L, Dyer J (2001) Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids Surface A 191:7–121

    Article  Google Scholar 

  • Vandenberghe RE, Barrero CA, Costa GM, Van San E, De Grave E (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interact 126:247–259

    Article  Google Scholar 

  • Wang XS, Qin Y (2006) Comparison of magnetic parameters with vehicular Br levels in urban roadside soils. Env Geol 50:787–791

    Article  Google Scholar 

  • Wang XS, Qin Y, Sang SX (2005) Accumulation and sources of heavy metals in urban topsoils: a case study from the city of Xuzhou, China. Env Geol 48:107

    Google Scholar 

  • Xie S, Dearing JA, Boyle JF, Bloemendal J, Morse AP (2001) Association between magnetic properties and element concentrations o f Liverpool street dust and its implications. J Appl Geophys 48:83–92

    Article  Google Scholar 

  • Yang T, Liu Q, Chan L, Cao G (2007) Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, China. Geophys J Int 171:603–612

    Article  Google Scholar 

  • Zhang C, Huang B, Li Z, Liu H (2006) Magnetic properties of high-road-side pine tree leaves in Beijing and their environmental significance. Chin Sci Bull 51:3041–3052

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding for this project provided by the Centre National de la Recherche Scientifique et Technique of Morocco (UATRS service).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Baghdadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Baghdadi, M., Barakat, A., Sajieddine, M. et al. Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ Earth Sci 66, 141–155 (2012). https://doi.org/10.1007/s12665-011-1215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1215-5

Keywords

Navigation