Advertisement

Environmental Earth Sciences

, Volume 65, Issue 8, pp 2407–2421 | Cite as

Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain)

  • A. I. MarínEmail author
  • N. Dörfliger
  • B. Andreo
Special Issue

Abstract

A comparative test of two vulnerability mapping methods (COP and PaPRIKa) specifically dedicated to for karst aquifers was carried out on two Mediterranean carbonate aquifers. The vulnerability maps obtained for each aquifer present important differences. To identify and determine the origin of these differences, the results were statistically analyzed using sensitivity analysis, coefficients of determination and scatter graphs. In addition, the global vulnerability (Gv) parameter was used to measure the general vulnerability of the aquifer and to compare the results obtained. This statistical analysis led us to conclude that the main cause of differences between these two methods used to assess aquifer vulnerability lie in the relative importance of the parameters employed in calculating the vulnerability index. For the PaPRIKa method, the variable related to infiltration (slope and karst features) has the most influence, with less weight being assigned to the protective capacity of layers overlying the aquifer. For the COP method, the most influent variable is defined by the layers overlying the aquifer, together with infiltration characteristics, determined by the relative importance of different forms of infiltration in each aquifer. The vulnerability mappings performed using the COP method present greater coherence with the known hydrogeological behavior of the study areas, especially the Spanish aquifers. Nevertheless, further hydrogeological investigations are needed, such as ones to validate the obtained vulnerability maps.

Keywords

Vulnerability Contamination Carbonate aquifer COP method PaPRIKa method Spain France 

Notes

Acknowledgments

A. I. Marin was supported by the Spanish Teaching Training Programme of the Ministry of Education. This manuscript is a contribution to projects CGL2008-06158 BTE of the Spanish Ministry of Science and Higher Education and IGCP 513 of UNESCO, and to Research Group RNM-308 funded by the Regional Government of Andalusia (Spain).The authors thank the Montpellier Agglomération, Hérault Conseil Général and the BRGM for their financial support as well in the framework of the Lez Multi-user management project.

References

  1. Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758. doi: 10.1007/s10040-008-0391-1 CrossRefGoogle Scholar
  2. Bakalowicz M (2006) Causses Majeurs. In: Roux JC (ed) Aquifères et eaux souterraines en France. Éditions BRGM et CFH-AIH. Orléans, pp 738–752Google Scholar
  3. Baker A, Barnes WL, Smart PL (1997) Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrol Process 11:541–555CrossRefGoogle Scholar
  4. Batiot C, Liñán C, Andreo B, Emblanch C, Carrasco F, Blavoux B (2003) Use of TOC as tracer of diffuse infiltration in a dolomitic karst system: the Nerja Cave (Andalusia, southern Spain). Geophys Res Lett 30(22):2179. doi: 10.1029/2003GL018546 CrossRefGoogle Scholar
  5. Bicalho CC (2010) Hydrochemical characterization of transfers in karst aquifers by natural and anthropogenic tracers. Example of a Mediterranean karst system, the Lez karst aquifer (Southern France) Ph.D. Thesis, University of Montpellier II, France, 172 ppGoogle Scholar
  6. Boinet N (2002) Inventaire spéléologique du causse de l’Hortus—Livre I. Club Loisir Plein Air, MontpellierGoogle Scholar
  7. Bosser S (2009) Caractérisation d’un aquifère karstique méditerranéen, à partir des données hydrochimiques et hydrogéologiques disponibles. Mémoire de stage de 2ème année de Master Professionnel - Rapport BRGM, 79 ppGoogle Scholar
  8. Conroux Y (2007) Caractérisation du fonctionnement hydrodynamique de l’aquifère karstique du Lez (Hérault) a l’etat naturel. Mémoire de stage de 2ème année de Master Professionnel—Université d’Avignon et des pays de Vaucluse et BRGM, 227 ppGoogle Scholar
  9. COST 65 (1995) Hydrogeological aspects of groundwater protection in karstic areas, Final report (COST Action 65). European Commission, Directorate-General XII Science, Research and Development, Report EUR 16547, Brüssel, LuxemburgGoogle Scholar
  10. Doerfliger N (1996) Advances in karst groundwater protection strategy using artificial tracer test analysis and multiattribute vulnerability mapping. Ph.D. Thesis, University of Neuchâtel, Switzerland, 292 ppGoogle Scholar
  11. Dörfliger N, Plagnes V (2009) Cartographie de la vulnérabilité intrinsèque des aquifères karstiques. Guide méthodologique de la méthode PaPRIKa. Avec la collaboration de K. Kavouri et J Gouin, BRGM RP-57527-FR, 105 pp, 55 ill., 4 annGoogle Scholar
  12. Fleury P, Ladouche B, Conroux Y, Jourde H, Dörfliger N (2009) Modelling of the functioning of a karst aquifer under active water management—Lez spring example. J Hydrol 36(3–4):235–243CrossRefGoogle Scholar
  13. Gogu RC, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345CrossRefGoogle Scholar
  14. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564CrossRefGoogle Scholar
  15. Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353. doi: 10.1007/s10040-010-0688-8 Google Scholar
  16. Kufs PG (1992) Statistical models of hydrogeologic data e part 1: regression and AANOVA models. Groundw Monit Rev 12(2):120–130CrossRefGoogle Scholar
  17. Ladouche B, Maréchal JC avec la collaboration de Desprats JF, Izac JL (2006) Fonctionnement hydrogéologique du système karstique de la fontaine de Nîmes en crue—Rapport final—BRGM/RP-54723-FR, 111 ppGoogle Scholar
  18. Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Inf Syst 4(4):413–428CrossRefGoogle Scholar
  19. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Annales de Spéléologie 29(3): 283–332, (4):495–601, 30(1):21–124Google Scholar
  20. Margat J (1968) Vulnerabilité des nappes d’eau souterraine á la pollution. Bases de la cartographie. Doc. BRGM, 68 SGL 198 HYD, OrléansGoogle Scholar
  21. Marín AI (2009) Los Sistemas de Información Geográfica aplicados a la evaluación de recursos hídricos y a la vulnerabilidad a la contaminación de acuíferos carbonatados. Caso de la Alta Cadena (Provincia de Málaga) Dissertation Thesis, University of Malaga, SpainGoogle Scholar
  22. Marín AI, Dörfliger N, Andreo B (2010) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in the Lez karst system (Montpellier, South France). In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in karst media. Springer, Berlin, pp 329–334CrossRefGoogle Scholar
  23. Marjolet G, Salado J (1976) Contribution à l’étude de l’aquifère karstique de la source du Lez (Hérault). Etude du chimise des eaux de la source du Lez et de son bassin Tome IX-FASC II, Université des Sciences et Techniques du Languedoc (Montpellier II), France, 101 ppGoogle Scholar
  24. Martín-Algarra M (1987) Evolución geológica alpina del contacto entre las Zonas Internas y Externas de la Cordillera Bética. Ph.D. Thesis, University of Granada, Spain, 1171 ppGoogle Scholar
  25. Mudarra M, Andreo B (2010) Hydrogeological functioning of a karst aquifer deduced from hydrochemical components and natural organic tracers present in spring waters. The case of Yedra spring (southern Spain). Acta Carsol 39(2):261–270Google Scholar
  26. Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (Southern Spain). J Hydrol 397:263–280. doi: 10.1016/j.jhydrol.2010.12.005 CrossRefGoogle Scholar
  27. Mudarra M, Andreo B, Marín AI (2008) Considerations about hydrogeological behaviour of carbonated aquifer Alta Cadena (Malaga province, Spain). Geogaceta 44:163–166Google Scholar
  28. Mudarra M, Marín AI, Andreo B, Vadillo I, Barberá JA, Neukum C, Sánchez-García D, Liñan C, Pérez-Ramos I (2010) Investigación del funcionamiento hidrogeológico del acuífero carbonatado drenado por el manantial de Villanueva del Rosario (Alta Cadena, Málaga) a partir de un ensayo de trazadores. Geogaceta 48:131–134Google Scholar
  29. Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, HydroGIS ‘96. In: Application of geographic information systems in hydrology and water resources management. IAH Publ 235:559–566Google Scholar
  30. Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51:689–694CrossRefGoogle Scholar
  31. Paloc H (1967) Carte hydrogéologique de la France. Région karstique nordmontpelliéraine. Notice explicative. Mémoires du BRGM n_50. BRGM, Paris, 229 ppGoogle Scholar
  32. Pane-Escribe MB (1995) Utilisation des éléments traces comme traceurs des circulations souterraines en milieu karstique (Site du Lamalou, Hérault). PhD Thesis, University of Montpellier II, 296 ppGoogle Scholar
  33. Perrin J, Pochon A, Jeannin PY, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46:237–245CrossRefGoogle Scholar
  34. Pételet-Giraud E, Dörfliger N, Crochet P (2000) RISKE: Méthode d’évaluation multicritère de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie 4:71–88Google Scholar
  35. Peyre Y (1974) Géologie d’Antequera et de sa région (Cordillères Bétiques, Espagne). Thèse Univ de Paris, Inst Nat Agronomique, París, France 528 ppGoogle Scholar
  36. Plagnes V, Kavouri N, Huneau F, Fourier M, Jaunat J, Pinto-Ferrerira C, Leroy B, Marchet P, Dörfliger N (2010) PaPRIKa, the French multicriteria method for mapping the intrinsic vulnerability of karst water resource and source—two examples (Pyrenees, Normady). In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in karst media. Springer, Berlin, pp 323–328CrossRefGoogle Scholar
  37. Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol 36(3):461–475Google Scholar
  38. Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–733CrossRefGoogle Scholar
  39. Thierry D, Bérrard P (1983) Alimentation en eau de la ville de Montpellier—captage de la source du Lez—études des relations entra la source et son réservour aquifère. BRGM, MontpellierGoogle Scholar
  40. Vías JM, Perles MJ, Andreo B, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595CrossRefGoogle Scholar
  41. Vías JM, Andreo B, Perles JM, Carrasco F, Vadillo I (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method: application in two pilot sites in southern Spain. Hydrogeol J 14(6):912–925CrossRefGoogle Scholar
  42. Vías J, Andreo B, Ravbar N, Hötzl H (2010) Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manag 91(7):1500–1510. doi: 10.10137j.envman.2010.02.025 CrossRefGoogle Scholar
  43. Zaporozec A (1994) Concept of groundwater vulnerability. In: En Vrba J, Zaporozec A (eds) Guidebook on mapping groundwater vulnerability. International contributions to hydrogeology 16. Verlag Heinz Heise, Hannover, pp 3–8Google Scholar
  44. Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report of COST Action 620. European Commission, Directorate-General XII Science, Research and Development, BrusselsGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Centre of Hydrogeology, Department of GeologyUniversity of Málaga (CEHIUMA)MálagaSpain
  2. 2.Water DivisionBRGMOrléans Cedex 02France

Personalised recommendations