Environmental Earth Sciences

, Volume 65, Issue 8, pp 2377–2389 | Cite as

Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer

  • Andreas Hartmann
  • Martin Kralik
  • Franko Humer
  • Jens Lange
  • Markus Weiler
Special Issue


For water management purposes, information about an entire aquifer system is generally more important than information about a specific spring. Since a karstic aquifer system might drain to several outlets, conclusions derived from a single spring can be misleading for characterization and modeling. In this study we apply a conceptual model to an Alpine dolomite karst system in Austria. The particular challenge was that several small springs with strongly varying hydrological behavior and diffuse flow into surrounding streams drain this system. Instead of applying the model to a single spring, it was calibrated simultaneously to several observations within the system aiming to identify the karst system’s intrinsic hydrodynamic parameters. Parameter identification is supported by modeling the transport of water isotopes (δ18O). The parameters were transferred to the whole system with a simple upscaling procedure and a sensitivity analysis was performed to unfold influence of isotopic information on parameter sensitivity and simulation uncertainty. The results show that it is possible to identify system intrinsic parameters. But the sensitivity analysis revealed that some are hardly identifiable. Only by considering uncertainty reasonable predictions can be provided for the whole system. Including isotopic information increases the sensitivity of some intrinsic parameters, but it goes along with a sensitivity decrease for others. However, a possible reduction of prediction uncertainty by isotopic information is compensated by deficiencies in the transport modeling routines.


Karst aquifer Karst modeling Water isotopes Solute transport modeling Upscaling Rainfall-runoff modeling 



Thanks to Maria-Theresia Grabner, Thomas Dirnböck, Florian Wenter and Johannes Kobler from the Environment Agency, Austria, for providing their data and valuable advice, to the measurement team, Manuela Nied, Nicole Jackisch, Matthias Ritter, Benjamin Gralher and Julien Farlin, for their brave encouragement in taking samples and measuring runoff during the rainfall-runoff event, to Irene Kohn and Jürgen Strub from the Institute of Hydrology for reviewing the paper and designing the figures and to Juraj Parajka from the Institut für Wasserbau und Ingenieurhydrologie, Technische Universität Wien, for providing information to calibrate the snow routine.


  1. Abbo H, Shavit U, Markel D, Rimmer A (2003) A numerical study on the influence of fractured regions on lake/groundwater interaction; the Lake Kinneret (Sea of Galilee) case. J Hydrol 283(1–4):225–243CrossRefGoogle Scholar
  2. Andreo B, Carrasco F, Durán JJ, LaMoreaux JW, Mudarra M, Andreo B, Mudry J (2010) Hydrochemical heterogeneity in the discharge zone of a karstic aquifer. In: LaMoreaux JW (ed) Advances in research in karst media. Environmental earth sciences. Springer, Berlin, pp 163–168. doi: 10.1007/978-3-642-12486-0_25 CrossRefGoogle Scholar
  3. Aquilina L, Ladouche B, Doerfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327:472–485CrossRefGoogle Scholar
  4. Austrian Network of Isotopes in Precipitation ANIP (2010) Database in cooperation with the Ministry of Environment, Austrian Federal States, Environmental Agency, ViennaGoogle Scholar
  5. Beven KJ (2003) Rainfall-runoff modelling: the primer. Wiley, ChichesterGoogle Scholar
  6. Birk S, Liedl R, Sauter M (2006) Karst spring responses examined by process-based modeling. Groundwater 44(6):832–836CrossRefGoogle Scholar
  7. Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers/Les hydrogrammes des sources karstiques en tant qu’indicateurs des aquifères karstiques. J Hydrol Sci 38(1):51–62CrossRefGoogle Scholar
  8. Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44 (W03408). doi: 10.1029/2007WR006277
  9. Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. CRC Press Inc, Boca RatonGoogle Scholar
  10. Dershowitz WS, La Pointe PR, Doe TW (2004) Advances in discrete fracture network modelling. In: Proceedings of the US EPA/NGWA Fractured Rock Conference, PortlandGoogle Scholar
  11. Doctor DH, Alexander ECJ, Petric M, Kogovsek J, Urbanc J, Lojen S, Stichler W (2006) Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeol J 14:1171–1191Google Scholar
  12. Doerfliger N, Fleury P, Ladouche B (2008) Inverse modeling approach to allogenic karst system characterization. Ground Water:1–13. doi: 10.1111/j.1745-6584.2008.00517.x
  13. Duan QY, Sorooshian S, Gupta HV (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRefGoogle Scholar
  14. Duan QY, Gupta HV, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521CrossRefGoogle Scholar
  15. Duan QY, Sorooshian S, Gupta HV (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284CrossRefGoogle Scholar
  16. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345:38–49CrossRefGoogle Scholar
  17. Fleury P, Ladouche B, Conroux Y, Jourde H, Doerfliger N (2009) Modelling the hydrologic functions of a karst aquifer under active water management—the Lez spring. J Hydrol 365:235–243CrossRefGoogle Scholar
  18. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterGoogle Scholar
  19. Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32:2161–2173CrossRefGoogle Scholar
  20. Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348:452–463CrossRefGoogle Scholar
  21. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor Francis & Group, LondonGoogle Scholar
  22. Grasso DA, Jeannin P-Y (1994) Etude critique des methods d’analyse de la réponse globale des systèmes karstiques. Application au site du Bure (JU, Suisse). Bulletin d’Hydrogéologie 13:87–113Google Scholar
  23. Hornberger GM, Spear RC (1981) An approach to the preliminary analysis of environmental systems. J Environ Manag 12:7–12Google Scholar
  24. Hu C, Hao Y, Yeh T-CJ, Pang B, Wu Z (2008) Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol Process 22:596–604CrossRefGoogle Scholar
  25. Humer F, Kralik M (2008) Integrated Monitoring Zöbelboden: Hydrologische und hydrochemische Untersuchungen. Unpubl Rep Environment Agency, Vienna:34Google Scholar
  26. IUSS Working Group WRB (2006) World reference base for soil resources 2006, World Soil Resources Report 103, FAO, RomeGoogle Scholar
  27. Jost G, Dirnböck T, Grabner M-T, Mirtl M (2010) Nitrogen leaching of two forest ecosystems in a karst watershed. Water Air Soil Pollut:1–17. doi: 10.1007/s11270-010-0674-8
  28. Jukic D, Denic-Jukic V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374CrossRefGoogle Scholar
  29. Jukic D, Denic-Jukic V (2009) Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. J Hydrol 373(3–4):302–315CrossRefGoogle Scholar
  30. Kinzelbach W (1986) Groundwater modelling. Int. Edition. Elsevier, AmsterdamGoogle Scholar
  31. Kiraly L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. Bulletin d’Hydrogéologie 16:77–98Google Scholar
  32. Kiraly L (2003) Karstification and Groundwater Flow. Speleogenesis Evol Karst Aquifers 1(3):1–24Google Scholar
  33. Kralik M, Keimel T (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: application to an alpine test site. Environ Geol 44:373–380CrossRefGoogle Scholar
  34. Kralik M, Humer F, Papesch W, Tesch R, Suckow A, Han LF, Gröning M (2009) Karstwater-ages in an alpine dolomite catchment, Austria: δ18O, 3H, 3H/3He, CFC and dye tracer investigations. European Geosciences Union, General Assembly, 19–24 April 2009, Vienna 11 (09180)Google Scholar
  35. Kurtulus B, Razack M (2006) Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeol J 15:241–254CrossRefGoogle Scholar
  36. Lange J, Arbel Y, Grodek T, Greenbaum N (2010) Water percolation process studies in a Mediterranean karst area. Hydrol Process 24(13):1866–1879CrossRefGoogle Scholar
  37. Le Moine N, Andréassian V, Perrin C, Michel C (2007) How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour Res 43 (W06428). doi: 10.1029/2006WR005608
  38. Le Moine N, Andréassian V, Mathevet T (2008) Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resour Res 44 (W03403). doi: 10.1029/2007WR005984
  39. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179Google Scholar
  40. Mahler BJ, Garner BD (2009) Using nitrate to quantify quick flow in a karst aquifer. Ground Water 47(3):350–360CrossRefGoogle Scholar
  41. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67(1–4):25–43CrossRefGoogle Scholar
  42. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  43. Parajka J, Merz R, Blöschl G (2007) Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrol Process 21(4):435–446. doi: 10.1002/hyp.6253 CrossRefGoogle Scholar
  44. Pinault J-L, Plagnes V, Aquilina L, Bakalowicz M (2001) Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: characterization of karst system functioning. Water Resour Res 37(8):2191–2204CrossRefGoogle Scholar
  45. Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW–2005. Ground Water 43(3):321–325CrossRefGoogle Scholar
  46. Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J Hydrol 331:524–542CrossRefGoogle Scholar
  47. Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res 38(11):1241. doi: 10.1029/2001WR000978 CrossRefGoogle Scholar
  48. Spear RC, Hornberger GM (1980) Eutriphication in peel inlet-II. Identification of critical uncertainties via generalized sensitivity analysis. Water Resour Res 14:43–49Google Scholar
  49. Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non linear hysteretic conceptual model. J Hydrol (in press, accepted manuscript)Google Scholar
  50. Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci 5(1):13–26CrossRefGoogle Scholar
  51. Wendling U, Schellin H.-G, Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung—the supply of daily information on the water budget of the soil as a contribution to the agrometeorological adviso. Zeitschrift für Meteorologie 41:468–475Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Hartmann
    • 1
  • Martin Kralik
    • 2
  • Franko Humer
    • 2
  • Jens Lange
    • 1
  • Markus Weiler
    • 1
  1. 1.Institute of HydrologyFreiburg UniversityFreiburgGermany
  2. 2.Umweltbundesamt, Environment Agency AustriaViennaAustria

Personalised recommendations