Environmental Earth Sciences

, Volume 64, Issue 7, pp 1951–1963 | Cite as

Environmental evolution recorded by lipid biomarkers from the Tawan loess–paleosol sequences on the west Chinese Loess Plateau during the late Pleistocene

  • Fangming Zeng
  • Shuyuan Xiang
  • Kexin Zhang
  • Yulin Lu
Original Article


This study provides a reconstruction of the environmental evolution since 128 ka recorded by the lipid biomarkers of the C15–C35n-alkanes, the C13–C33n-alkan-2-ones and the C12–C30n-alkanols isolated from the Tawan loess section, Northwest China. Variations in paleoenvironment are reconstructed from the values of the carbon preference index (CPI), the average chain length (ACL), the L/H (ratio of lower-molecular-weight to higher-molecular-weight homologues), the n-alkane C27/C31 ratios, and the n-alkan-2-one C27/C31 ratio. These parameters indicate the dominance of grasses over the west Chinese Loess Plateau (CLP) during the late Pleistocene. Lower values of the CPI and the ACL values, respectively, indicate stronger microbial reworking of organic matter and changes in plant species, which are both indicative of a warmer-wetter environment. Furthermore, the fluctuations of environment recorded in the Tawan section exhibit ten phases that show obvious cycles between warm periods and cold intervals. This study reveals that changes in the biomarker proxies agree well with changes in the magnetic susceptibility and grain size, and it indicates a huge potential for paleoenvironmental reconstructions by using the n-alkan-2-one and n-alkanol proxies.


Loess Lipid biomarker Linxia Late Pleistocene Earth environment 


  1. Allen JE, Forney FW, Markovetz AJ (1971) Microbial subterminal oxidation of alkanes and alk-1-enes. Lipids 6:448–452CrossRefGoogle Scholar
  2. An Z, Kukla GJ, Porter SC, Xiao J (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years. Quat Res 36:29–36CrossRefGoogle Scholar
  3. Bai Y, Fang X, Wang Y, Kenig F, Miao Y, Wang Y (2006) Distribution of aliphatic ketones in Chinese soils: potential environmental implications. Org Geochem 37:860–869CrossRefGoogle Scholar
  4. Bai Y, Fang X, Nie J, Wang Y, Wu F (2009) A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Paleogeogr Palaeoclim Palaeoecol 271:161–169CrossRefGoogle Scholar
  5. Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15CrossRefGoogle Scholar
  6. Brincat D, Yamada K, Ishiwatari R, Uemura H, Naraoka H (2000) Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org Geochem 31:287–294CrossRefGoogle Scholar
  7. Chen F, Li Z, Ma H, Zhang W (1993) Loess stratigraphy and Quaternary glacials in Gansu and Qinghai Provinces. Science Press, Beijing (in Chinese)Google Scholar
  8. Chen J, An Z, Head J (1999) Variation of Rb/Sr ratios in the loess–paleosol sequences of central China during the last 130, 000 years and their implications for monsoon paleoclimatology. Quat Res 51:215–219CrossRefGoogle Scholar
  9. Chinese Natural Resources Database (2009). http://www.data.ac.cn/newzrzy/index.asp
  10. Clark RC, Blumer M (1967) Distribution of n-paraffins in marine organisms and sediment. Limnol Oceanogr 12:79–87CrossRefGoogle Scholar
  11. Cranwell PA (1973) Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshw Biol 3:259–265CrossRefGoogle Scholar
  12. Cranwell PA (1980) Branched cyclic alkanols in lacustrine sediments (Great Britain): recognition of iso-and anteiso-branching and stereochemical analysis of homologous alkan-2-ols. Chem Geol 30:15–26CrossRefGoogle Scholar
  13. Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org Geochem 11:513–527CrossRefGoogle Scholar
  14. Cui JW, Huang JH, Xie SC (2008) Characterstics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei Province, China. Chin Sci Bull 53(17):2659–2664CrossRefGoogle Scholar
  15. Dettman DL, Fang X, Garzione CN, Li J (2003) Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett 214:267–277CrossRefGoogle Scholar
  16. Ding ZL, Derbyshire E, Yang SL, Yu ZW, Xiong SF, Liu TS (2002) Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography. doi:10.1029/2001PA000725
  17. Duan Y, Ma L (2001) Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau, China). Org Geochem 32:1429–1442CrossRefGoogle Scholar
  18. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335CrossRefGoogle Scholar
  19. Fan M, Song C, Dettman DL, Fang X, Xu X (2006) Intensification of the Asian winter monsoon after 7.4 Ma: grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth Planet Sci Lett 248:186–197CrossRefGoogle Scholar
  20. Ficken KJ, Street-Perrott FA, Perrott RA, Swain DL, Olago DO, Eglinton G (1998) Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa. Org Geochem 29:1701–1719CrossRefGoogle Scholar
  21. Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749CrossRefGoogle Scholar
  22. Freeman KH, Colarusso LA (2001) Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochim Cosmochim Acta 65:1439–1454CrossRefGoogle Scholar
  23. Gallet S, Jahn B, Torii M (1996) Geochemical characterization of the Luochuan loess–paleosol sequence, China, and paleoclimatic implications. Chem Geol 133:67–88CrossRefGoogle Scholar
  24. Han J, McCarthy ED, Van Hoeven W, Calvin M, Bradley WH (1968) Organic geochemical studies, II A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc Natl Acad Sci USA 59:29–33CrossRefGoogle Scholar
  25. Heller F, Liu T (1984) Magnetism of Chinese loess deposits. Geophys J R astr Soc 77:125–141Google Scholar
  26. Hong H, Li Z, Xue H, Zhu Y, Zhang K, Xiang S (2007) Oligocene clay mineralogy of the Linxia Basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan Plateau. Clays Clay Miner 55:492–505CrossRefGoogle Scholar
  27. Huang Y, Bol R, Harkness DD, Ineson P, Eglinton G (1996) Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Org Geochem 24:273–287CrossRefGoogle Scholar
  28. Jeng WL (2006) Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem 102:242–251CrossRefGoogle Scholar
  29. Jia RF, Yan BZ, Li RS, Fan GC, Lin BH (1996) Characteristics of magnetotactic bacteria in Duanjiapo loess section, Shaanxi Province and their environment significance. Sci China D Earth Sci 39:478–485Google Scholar
  30. Kukla G, Heller F, Liu XM, Xu TC, Liu TS, An ZS (1988) Pleistocene climates in China dated by magnetic susceptibility. Geology 16:811–814CrossRefGoogle Scholar
  31. Lavee H, Imeson AC, Sarah P (1998) The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad Dev 9:407–422CrossRefGoogle Scholar
  32. Lei GL, Zhang HC, Chang FQ, Pu Y, Zhu Y, Yang MS, Zhang WQ (2010) Biomarkers of modern plants and soils from Xinglong Mountain in the transitional area between the Tibetan and Loess Plateaux. Quat Int 218:143–150CrossRefGoogle Scholar
  33. Li JJ, Fang XM, Van der Voo R, Zhu JJ, Niocaill CM, Ono Y, Pan BT, Zhong W, Wang JL, Sasaki T, Zhang YT, Cao JX, Kang SC, Wang JM (1977) Magnetostratigraphic dating of river terraces: rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. J Geophys Res 102:10121–10132CrossRefGoogle Scholar
  34. Li J, Feng Z, Tang L (1988) Late Quaternary monsoon patterns on the Loess Plateau of China. Earth Surf Process Landf 13:125–135CrossRefGoogle Scholar
  35. Liu TS (1985) Loess and the Environment. Science Press, Beijing (in Chinese)Google Scholar
  36. Liu T, Ding Z (1998) Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci 26:111–145CrossRefGoogle Scholar
  37. Logan GA, Smiley CJ, Eglinton G (1995) Preservation of fossil leaf waxes in association with their source tissues, Clarkia, northern Idaho, USA. Geochim Cosmochim Acta 59:751–763CrossRefGoogle Scholar
  38. Lu H, Wu N, Liu T, Han J, Qin X (1996) Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150,000 a. Sci China D Earth Sci 39:629–639Google Scholar
  39. Maffei M (1996) Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochem Syst Ecol 24:53–64CrossRefGoogle Scholar
  40. Maher BA, Thompson R (1995) Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quat Res 44:383–391CrossRefGoogle Scholar
  41. Marseille F, Disnar JR, Guillet B, Noack Y (1999) n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. Eur J Soil Sci 50:433–441CrossRefGoogle Scholar
  42. Meyers PA, Eadie BJ (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 20:47–56CrossRefGoogle Scholar
  43. Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP (2000) n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem 31:231–235CrossRefGoogle Scholar
  44. Pisias NG, Martinson DG, Moore TC Jr, Shackleton NJ, Prell W, Hays J, Boden G (1984) High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Mar Geol 56:119–136CrossRefGoogle Scholar
  45. Poynter JG, Farrimond P, Robinson N, Eglinton G (1989) Aeolian-derived higher plant lipids in the marine sedimentary record: Links with palaeoclimate. In: Leinen M, Sarnthein M (eds) Paleoclimatology and Paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Dordrecht, pp 435–462Google Scholar
  46. Rieley G, Collier RJ, Jones DM, Eglinton G (1991) The biogeochemistry of Ellesmere Lake. U.K.-I: source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem 17:901–912CrossRefGoogle Scholar
  47. Simoneit BRT, Mazurek MA (1982) Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos Environ 16:2139–2159CrossRefGoogle Scholar
  48. Simoneit B, Mazurek MA, Brenner S, Crisp PT, Kaplan IR (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep Sea Res 26:879–891CrossRefGoogle Scholar
  49. Sun X, Song C, Wang F, Sun M (1997) Vegetation history of the Loess Plateau of China during the last 100,000 years based on pollen data. Quat Int 37:25–36CrossRefGoogle Scholar
  50. Szafranek BM, Synak EE (2006) Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67:80–90CrossRefGoogle Scholar
  51. Vioque J, Pasto J, Vioque E (1994) Leaf wax alcohols in Coincya (Brassicaceae). J Am Oil Chem Soc 71:671–673CrossRefGoogle Scholar
  52. Voelker AHL (2002) Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat Sci Rev 21:1185–1212CrossRefGoogle Scholar
  53. Volkman JK, Gillan FT, Johns RB, Eglinton G (1981) Sources of neutral lipids in a temperate intertidal sediment. Geochim Cosmochim Acta 45:1817–1828CrossRefGoogle Scholar
  54. Wakeham SG (1990) Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco Trench. Geochim Cosmochim Acta 54:1325–1336CrossRefGoogle Scholar
  55. Wang YL, Fang XM, Bai Y, Xi XX, Zhang XZ, Wang YX (2007) Distribution of lipids in modern soils from various regions with continuous climate (moisture-heat) change in China and their climate significance. Sci China D Earth Sci 50:600–612CrossRefGoogle Scholar
  56. Xi CF, Zhang JM, Qiu BJ (1984) Summary of physical regionalization in China. Science Press, Beijing (in Chinese)Google Scholar
  57. Xiao J, Porter SC, An Z, Kumai H, Yoshikawa S (1995) Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr. Quat Res 43:22–29CrossRefGoogle Scholar
  58. Xie S, Not CJ, Avsejs LA, Volders F, Maddy D, Chambers FM, Gledhill A, Carter JF, Evershed RP (2000) Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem 31:1053–1057CrossRefGoogle Scholar
  59. Xie S, Wang Z, Wang H, Chen F, An C (2002) The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: the molecular fossil record. Sci China D Earth Sci 45:53–62Google Scholar
  60. Xie S, Chen F, Wang Z, Wang H, Gu Y, Huang Y (2003a) Lipid distributions in loess–paleosol sequences from northwest China. Org Geochem 34:1071–1079CrossRefGoogle Scholar
  61. Xie S, Lai X, Yi Y, Gu Y, Liu Y, Wang X, Liu G, Liang B (2003b) Molecular fossils in a Pleistocene river terrace in southern China related to paleoclimate variation. Org Geochem 34:789–797CrossRefGoogle Scholar
  62. Xie S, Yi Y, Huang J, Hu C, Cai Y, Collins M, Baker A (2003c) Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quat Res 60:340–347CrossRefGoogle Scholar
  63. Xie S, Yi Y, Liu Y, Gu Y, Ma Z, Lin W, Wang X, Liu G, Liang B, Zhu Z (2003d) The Pleistocene vermicular red earth in South China signaling the global climatic change: the molecular fossil record. Sci China D Earth Sci 46:1113–1120CrossRefGoogle Scholar
  64. Xie S, Guo J, Huang J, Chen F, Wang H, Farrimond P (2004) Restricted utility of δ13C of bulk organic matter as a record of paleovegetation in some loess–paleosol sequences in the Chinese Loess Plateau. Quat Res 62:86–93CrossRefGoogle Scholar
  65. Xie S, Liang B, Gu Y, Yang H (2008) Distribution of n-alkan-2-ones in Quaternary paleosols indicative of paleoclimate changes. Acta Palaeontol Sin 47:273–278 (in Chinese)Google Scholar
  66. Zeng FM, Xiang SY, Lu YL, Ma XM, Lu JF (2007) Environmental evolution of late Pleistocene loess deposits at Lintao County, Gansu Province. Earth Sci J China Univ Geosci 32:703–712 (in Chinese)Google Scholar
  67. Zhang K, Zhu Y (2006) People’s Republic of China regional geological report (1:250000): Linxia map (I48C001001) and Dingxi map (I48C001002). China University of Geosciences, Wuhan (unpublished report, in Chinese)Google Scholar
  68. Zhang Z, Zhao M, Eglinton G, Lu H, Huang CY (2006) Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170kyr. Quat Sci Rev 25:575–594CrossRefGoogle Scholar
  69. Zhang HC, Yang MS, Zhang WX, Lei GL, Chang FQ, Pu Y, Fan HF (2008) Molecular fossil and paleovegetation records of paleosol S4 and adjacent loess layers in the Luochuan loess section, NW China. Sci China D Earth Sci 51:321–330CrossRefGoogle Scholar
  70. Zhou LP, Oldfield F, Wintle AG, Robinson SG, Wang JT (1990) Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346:737–739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fangming Zeng
    • 1
  • Shuyuan Xiang
    • 2
  • Kexin Zhang
    • 2
  • Yulin Lu
    • 3
  1. 1.Institute of Geology and GeophysicsGraduate University, Chinese Academy of SciencesBeijingChina
  2. 2.Faculty of Earth Sciences, State Key Lab of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.Development and Research CenterChina Geological SurveyBeijingChina

Personalised recommendations