Environmental Earth Sciences

, Volume 66, Issue 6, pp 1683–1696 | Cite as

Advances in landslide nowcasting: evaluation of a global and regional modeling approach

  • Dalia Bach Kirschbaum
  • Robert Adler
  • Yang Hong
  • Sujay Kumar
  • Christa Peters-Lidard
  • Arthur Lerner-Lam
Special Issue

Abstract

The increasing availability of remotely sensed data offers a new opportunity to address landslide hazard assessment at larger spatial scales. A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that may experience landslide activity. This system combines a calculation of static landslide susceptibility with satellite-derived rainfall estimates and uses a threshold approach to generate a set of ‘nowcasts’ that classify potentially hazardous areas. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale near real-time landslide hazard assessment efforts, it requires several modifications before it can be fully realized as an operational tool. This study draws upon a prior work’s recommendations to develop a new approach for considering landslide susceptibility and hazard at the regional scale. This case study calculates a regional susceptibility map using remotely sensed and in situ information and a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America. The susceptibility map is evaluated with a regional rainfall intensity–duration triggering threshold and results are compared with the global algorithm framework for the same event. Evaluation of this regional system suggests that this empirically based approach provides one plausible way to approach some of the data and resolution issues identified in the global assessment. The presented methodology is straightforward to implement, improves upon the global approach, and allows for results to be transferable between regions. The results also highlight several remaining challenges, including the empirical nature of the algorithm framework and adequate information for algorithm validation. Conclusions suggest that integrating additional triggering factors such as soil moisture may help to improve algorithm performance accuracy. The regional algorithm scenario represents an important step forward in advancing regional and global-scale landslide hazard assessment.

Keywords

Landslide forecasting Hazard inventory Algorithm development Central America Hurricane Mitch 

References

  1. Ahmad R (2003) Developing early warning systems in Jamaica: rainfall thresholds for hydrological hazards. In: National Disaster Management Conference, Ocho Rios, St. Ann, JamaicaGoogle Scholar
  2. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265CrossRefGoogle Scholar
  3. Baeza C, Lantada N, Moya J (2009) Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environ Earth Sci. doi:10.1007/s12665-009-0361-5
  4. Batjes NH (2000) Global data set of derived soil properties, 0.5-degree grid (ISRIC-WISE). Oak Ridge National Laboratory Distributed Active Archive CenterGoogle Scholar
  5. Baum RL, Savage WZ, Godt JW (2008) TRIGRS–a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0. U.S. Geological Survey, Open-File, pp 1–75Google Scholar
  6. Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115(F03013):26. doi:10.1029/2009JF001321 Google Scholar
  7. Bucknam RC, Coe JA, Chavarría MM, Godt JW, Tarr AC, Bradley L, Rafferty S, Hancock D, Dart RL, Johnson ML (2001) Landslides triggered by Hurricane Mitch in Guatemala—inventory and discussion. U.S. Geological Survey Open-File Report 01-443, pp 1–40Google Scholar
  8. Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann 62:23–27CrossRefGoogle Scholar
  9. Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72:250–271CrossRefGoogle Scholar
  10. Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslides in the Seattle, Washington, Area-Exceedance and Probability. U.S. Geological Survey Open-File Report 2006-1064Google Scholar
  11. Coe JA, Godt JW, Baum RL, Bucknam RC, Michael JA (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontura SA, Sayão ASF (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 69–78Google Scholar
  12. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  13. Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landf 24:825–833CrossRefGoogle Scholar
  14. Dai FC, Lee CF, Tham LG, Ng KC, Shum WL (2004) Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong. Bull Eng Geol Environ 63:315–327CrossRefGoogle Scholar
  15. Devoli G, Strauch W, Chávez G, Høeg K (2007) A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides 4:163–176CrossRefGoogle Scholar
  16. EM-DAT (2008) The OFDA/CRED International Disaster Database. Université Catholique de Louvain. http://www.emdat.be/
  17. FAO/UNESCO (2003) Digital soil map of the world and derived soil properties. Food and Agriculture Organization. http://www.fao.org/ag/agl/agll/dsmw.htm
  18. Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45. doi:10.1029/2005RG000183
  19. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874CrossRefGoogle Scholar
  20. Friedl MA, McIver DK, Hodges JC et al (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  21. Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using empirical “Antecedent Daily Rainfall Model”. Pure Appl Geophys 157:1059–1079CrossRefGoogle Scholar
  22. Guinau M, Pallàs R, Vilaplana JM (2005) A feasible methodology for landslide susceptibility assessment in developing countries: a case-study of NW Nicaragua after Hurricane Mitch. Eng Geol 80:316–327. doi:10.1016/j.enggeo.2005.07.001 CrossRefGoogle Scholar
  23. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  24. Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazard Earth Syst Sci 6:115–131CrossRefGoogle Scholar
  25. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  26. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17CrossRefGoogle Scholar
  27. Harp EL, Hagaman KW, Held MD, Mckenna JP (2002) Digital inventory of landslides and related deposits in Honduras triggered by Hurricane Mitch. U.S. Geological Survey Open-File Report 2004-1348, pp 1–22Google Scholar
  28. Hoehler FK (2000) Bias and prevalence effects on kappa viewed in terms of sensitivity and specificity. J Clin Epidemiol 53:499–503CrossRefGoogle Scholar
  29. Hong Y, Adler R, Huffman G (2006) Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys Res Lett 33:1–5. doi:10.1029/2006GL028010 Google Scholar
  30. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazard 43:245–256CrossRefGoogle Scholar
  31. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  32. INTER (1995) Mapa Geológico Minero de la Republica de Nicaragua a escala 1:500.000, personal communicationGoogle Scholar
  33. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910CrossRefGoogle Scholar
  34. Kirschbaum DB (2009) Multi-scale landslide hazard and risk assessment: a modeling and multivariate statistical approach. Doctoral Dissertation, Columbia UniversityGoogle Scholar
  35. Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009a) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazard Earth Syst Sci 9:673–686CrossRefGoogle Scholar
  36. Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam A (2009b) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazard 52:561–575CrossRefGoogle Scholar
  37. Kojima H, Chung CJ, van Westen CJ (2000) Strategy on the landslide type analysis based on the expert knowledge and the quantitative prediction model. Int Arch Photogramm Remote Sens XXXIII:701–708Google Scholar
  38. Kumar SV, Peters-Lidard CD, Tian Y, Houser PR, Geiger J, Olden S, Lighty L, Eastman JL, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2006) Land information system—an interoperable framework for high resolution land surface modeling. Environ Model Softw 21:1402–1415CrossRefGoogle Scholar
  39. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  40. Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann 75:13–23CrossRefGoogle Scholar
  41. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. doi:10.1007/s10346-006-0047-y CrossRefGoogle Scholar
  42. Lee S, Ryu J-H, Kim I-S (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338. doi:10.1007/s10346-007-0088-x CrossRefGoogle Scholar
  43. Liao Z, Hong Y, Kirschbaum D, Adler RF, Gourley JJ, Wooten R (2010) Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Nat Hazard. doi:10.1007/s11069-010-9670-y
  44. Liao Z, Hong Y, Kirschbaum D, Liu C (2011) Assessment of shallow landslides from Hurricane Mitch in Central America using a physically based model. Environ Earth Sci (accepted)Google Scholar
  45. Menéndez-Duarte R, Marquínez J, Devoli G (2003) Slope instability in Nicaragua triggered by Hurricane Mitch: distribution of shallow mass movements. Environ Geol 44:290–300CrossRefGoogle Scholar
  46. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  47. Nadim F, Cepeda J, Sandersen F, Jaedicke C, Heyerdahl H (2009) Prediction of rainfall-induced landslides through empirical and numerical models. In: Rainfall-induced landslides: mechanisms, monitoring techniques and nowcasting models for early-warning systems. First Italian Workshop on Landslides, Naples, pp 1–10Google Scholar
  48. Peters-Lidard CD, Houser PR, Tian Y et al (2007) High-performance Earth system modeling with NASA/GSFC’s land information system. Innov Syst Softw Eng 3:157–165CrossRefGoogle Scholar
  49. PROARCA/CAPAS (1998) Central American vegetation/land cover classification and conservation status. http://sedac.ciesin.columbia.edu/conservation/proarca.html. Accessed Sept 2007
  50. Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262CrossRefGoogle Scholar
  51. Rodriguez CE, Torres AT, León EA (2006) Landslide Hazard in El Salvador. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) ECI conference on geohazards Lillehammer, Paper 6, pp 10Google Scholar
  52. SNET/MARN (2008) El Salvador geology, G. Molina. Centro de Investigaciones Geotecnicas, MOP, Universidad Politecnica de Madrid, Sistema de Referencia TerritorialGoogle Scholar
  53. Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410CrossRefGoogle Scholar
  54. Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner KA, Schuster RL (eds) Landslides: investigations and mitigation. TRB Special Transportation Research Board, Washington, D.C., pp 76–88Google Scholar
  55. Wieczorek GF, Newell WL, Chirico PG, Gohn GS, Nardini R, Putbrese T (1998) Introduction and metadata for preliminary digital geologic map database for Honduras. U.S. Geological Survey Open-file Report 98-774Google Scholar

Copyright information

© US Government 2011

Authors and Affiliations

  • Dalia Bach Kirschbaum
    • 1
  • Robert Adler
    • 2
  • Yang Hong
    • 3
    • 4
  • Sujay Kumar
    • 5
  • Christa Peters-Lidard
    • 1
  • Arthur Lerner-Lam
    • 6
  1. 1.Hydrological Sciences Branch, Code 614.3, NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Earth System Science Interdisciplinary Center (ESSIC)University of Maryland College ParkCollege ParkUSA
  3. 3.School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanUSA
  4. 4.ARRC Atmospheric Radar Research Center, The National Weather Center, University of OklahomaNormanUSA
  5. 5.Science Applications International Corporation (SAIC)BeltsvilleUSA
  6. 6.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations