Advertisement

Environmental Earth Sciences

, Volume 65, Issue 2, pp 411–420 | Cite as

Hydrogeochemistry of fluoride in the Quequen river basin: natural pollutants distribution in the argentine pampa

  • D. E. MartínezEmail author
  • O. M. Quiroz Londoño
  • H. E. Massone
  • P. Palacio Buitrago
  • L. Lima
Special Issue

Abstract

Fluoride pollution is a widespread problem in Argentina, as it is in many areas of the World. Former investigations have demonstrated that the dissolution of volcanic glass disseminated in the loess-like sediments is the main source of fluoride in the Argentine pampas. Nevertheless, fluoride distribution is erratic and the factors controlling it are not yet well-known. A large amount of hydrochemical data collected in the Quequen Grande river catchment is used in order to contribute to the understanding of fluoride distribution and mobility in groundwater in the Argentine pampas. The Quequen Grande river catchment is 10,000 km2. It extends between two low hills ranges of Precambrian metamorphic rocks and sedimentary Paleozoic rocks, filled by a thick sequence of Cenozoic sediments, mainly silts and silt-clayed, with sand layers. These sediments form a multilayer phreatic aquifer, which is recharged from precipitation infiltration, discharging through streams directly into the sea. Fluoride concentration in surface water (n = 353) ranges between 0 and 6.5 mg/l, with an average value of 2.14 mg/l. Groundwater concentration (n = 135) is from 0 up to 5.7 mg/l, with an average of 1.84 mg/l. Considering the statistic distribution of fluoride, two groups of samples can be determined. A dominant group between 0 and 3 mg/l, with a mean value around 1.5 mg/l, corresponding to samples widely distributed in the catchment; and a second one group with fluoride contents between 3 and 6 mg/l, corresponding to a smaller area in the central-west border. Two different sources are proposed. Volcanic glass dissolution is responsible for dominant values in the catchment, while the weathering of biotite from the Paleozoic bedrock can be assumed to account for the higher concentrations in the second group.

Keywords

Argentine pampas Quequen Grande river Fluoride Hydrogeochemisty 

Notes

Acknowledgments

The authors are grateful to Mr. Gustavo Bernava from the water chemical analyses. This study was supported by grants from ANPCyT, CONICET, and IAEA.

References

  1. APHA-AWWA-WPCF (1989) Standard methods for the examination of water and wastewater, 17th edn. Washington, USAGoogle Scholar
  2. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30(4):345–353CrossRefGoogle Scholar
  3. Blarasin M (2003) Geohidrología ambiental del Sur de Córdoba, con énfasis en la ciudad de Río Cuarto y su entorno rural. PhD Thesis, UNRC. 300 páginasGoogle Scholar
  4. Bundschuh J, Farías B, Martin R, Storniolo A, Bhattacharya P, Cortés J (2004) Groundwater arsenic in the Chaco-Pampean Plain: case study from Robles County, Santiago del Estero Province. Appl Geochem 19:231–243CrossRefGoogle Scholar
  5. CAC (Código Alimentario Argentino) (1994) Resolución 494/94. Boletín Oficial Nº 27.932, 1ra sección. Art. 982 modificadoGoogle Scholar
  6. Chae GT, Yun ST, Kim K, Mayer B (2006a) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pochon Spa Area, South Korea: waterrock interaction and hydrologic mixing. J Hydrol (Amst) 321:326–343. doi: 10.1016/j.jhydrol.2005.08.006 CrossRefGoogle Scholar
  7. Chae GT, Yun ST, Kwon MJ, Kim YS, Mayer B (2006b) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem J 40(1):95–102. doi: 10.2343/geochemj.40.95 CrossRefGoogle Scholar
  8. Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1–3):272–283. doi: 10.1016/j.scitotenv.2007.06.038 Google Scholar
  9. Coetsiers M, Kilonzo F, Walraevens K (2008) Hydrochemistry and source of high fluoride in groundwater of the Nairobi area, Kenya. J Hydrol Sci 53(6):1230–1240CrossRefGoogle Scholar
  10. Dissanayake CB (1991) The fluoride problem in the groundwater of Sri Lanka environmental management and health. Int J Environ Stud 38:137–156CrossRefGoogle Scholar
  11. Edmunds WM (1994) Characterization of groundwaters in semi-arid and arid zones using minor elements. In: Nash H, McCall GJH (eds) Groundwater quality. Chapman and Hall, London, pp 19–30Google Scholar
  12. Edmunds WM, Smedley PL (2005) Fluoride in natural waters. In: Selinus O (ed) Essentials of medical geology. Elsevier Academic, Burlington, pp 301–329Google Scholar
  13. Fantong WY, Satake H, Avonghe SN, Suh EC, Adelana SM, Fantong EB, Banseka HS, Gwanfogbe CD, Woincham LN, Uehara Y, Zhang J (2009) Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga river basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environ Geochem Health. doi: 10.1007/s10653-009-9271-4 Google Scholar
  14. Franco MF, Carro Perez ME (2009) Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environ Geochem Health 31:673–682CrossRefGoogle Scholar
  15. Gaciri SJ, Davies TJ (1993) The occurrence and geochemistry of fluoride in some natural waters of Kenya. J Hydrol 143(3–4):395–412CrossRefGoogle Scholar
  16. Gomez ML, Blarasin MT, Martínez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Env Geol 57:143–155CrossRefGoogle Scholar
  17. Guo Q, Wang Y, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentration in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor 93:1–12CrossRefGoogle Scholar
  18. Handa BK (2006) Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water 13(3):275–281CrossRefGoogle Scholar
  19. Kruse E, Ainchil J (2003) Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Env Geol 44(1):86–89Google Scholar
  20. Llambías E, Prozzi CR (1975) Ventania. En Geología de la Provincia de Buenos Aires, 6° Congreso Geológico Argentino, Relatorio 79-101, Buenos AiresGoogle Scholar
  21. Marshall W, Warakomski M (1980) Amorphous silica solubility. II: effect of aqueous salt solutions at 25_C. Geochim Cosmochim Acta 44:915–924CrossRefGoogle Scholar
  22. Martínez DE, Quiroz Londoño OM, Dapeña C, Massone H, Ferrante A, Bocanegra E (2007) Aportes al modelo hidrogeológico conceptual de la cuenca del Río Quequén Grande, Provincia de Buenos Aires. V Congreso Hidrogeológico Argentino. Actas I: 262-271. Paraná. Entre Ríos 16-19/10/2007. ISBN 978-987-23936-3-2Google Scholar
  23. Martínez DE, Solomon K, Dapeña C, Quiroz Londoño M, Massone H (2009) Técnicas modernas en la determinación de la edad del agua: acuífero pampeano, cuenca del río Quequen Grande (Buenos Aires). VI Argentine Congreso of Hydrogeology. Actas Vol. II: 621-630. Santa Rosa; La Pampa, AregentinaGoogle Scholar
  24. Merodio JC (1985) Métodos estadísticos en Geología. Asociación Geológica Argentina, Serie Didáctica y Complementaria Nº13, 230 pp. Buenos Aires, ArgentinaGoogle Scholar
  25. Nicolli H, Suriano JM, Gómez Peral MA, Ferpozzi LH, Baleani O (1989) Groundwater contamination with Arsenic and other trace elements in an area of the La Pampa province of Córdoba, Argentina. Environ Geol Water Sci 14(1):3–16CrossRefGoogle Scholar
  26. Ozsvath DL (2008) Fluoride and environmental health: a review. Rev Environ Sci Biotechnol 8(1):59–79CrossRefGoogle Scholar
  27. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2).A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 pGoogle Scholar
  28. Quiroz Londoño OM, Martínez DE, Dapeña C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradiente catchments of the province of Buenos Aires, Argenitna. Hydrogeol J 16:1113–1127CrossRefGoogle Scholar
  29. Rafique T, Naseem S, Bhanger MI, Usmani T (2008) Floride ion contamination in the groundwater of Mithi sub-distric, the Thar Desrt, Pakistan. Environ Geol 56:317–326CrossRefGoogle Scholar
  30. Rao NCR (2003) Fluoride and environment—a review. In: Bunch MJV, Suresh M, Kumaran TV (eds) Proceedings of third international conference on environment and health. York University, Chennai, IndiaGoogle Scholar
  31. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio O (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17(3):259–284CrossRefGoogle Scholar
  32. Smedley PL, Kinniburgh DG, Macdonald DM, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20(5):989–1016CrossRefGoogle Scholar
  33. Smirnov SJ (1963) Statistical distribution of the concentrations of elements in natural waters. Geochemestry 4:437–444Google Scholar
  34. Teruggi M (1957) The nature and origin of the Argentine loess. J Sed Petrol 27(3):322–332Google Scholar
  35. Tricart JLF (1973) Geomofología de la Pampa Deprimida. INTA, Colección Científica Nº 12: 202Google Scholar
  36. Turner B, Binning P, Stipp LS (2005) Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ Sci Technol 39(24):9561–9568CrossRefGoogle Scholar
  37. Warren C, Burgess WC, García M (2005) Hydrochemical associations and depth profiles of arsenic and fluoride in Quaternary loess aquifers of northern Argentina. Mineral Mag 69(5):877–886. doi: 10.1180/0026461056950295 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. E. Martínez
    • 1
    • 2
    Email author
  • O. M. Quiroz Londoño
    • 1
    • 2
  • H. E. Massone
    • 2
  • P. Palacio Buitrago
    • 3
  • L. Lima
    • 1
    • 2
  1. 1.CONICETMar del PlataArgentina
  2. 2.Instituto de Geología de Costas y del CuaternarioUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Universidad de AntioquiaMedellinColombia

Personalised recommendations